2017-10-07 81 views
1

我有一個數據框和數字和字符串列。熊貓:用NaN替換數據幀的所有數字列中的離羣值(3西格瑪)

import numpy as np 
import pandas as pd 
from scipy.stats import zscore 

data = {'c1' : [1., 2., 3., 4.], 'c2' : [4., 3., 2., 1.], 'c3' : [5., 6., 7000., 8.], 
     'c4' : [8., 7., 6., 10000.], 'c5' : ['a', 'b', 'c', 'd']} 

我想用NaN替換數值列中的異常值。

c1 c2 c3 c4 c5 
0 1.0 4.0 5.0 8.0 a 
1 2.0 3.0 6.0 7.0 b 
2 3.0 2.0 NaN 6.0 c 
3 4.0 1.0 8.0 NaN d 

此代碼做我想做的事情。

df = pd.DataFrame(data) 
allcol = list(df) 
numcol = [x for x in allcol if x not in ('c5')] 
df[numcol] = df[numcol].mask(~df[numcol].apply(lambda x: zscore(x) < 1.5, axis=1)) 

想知道,如果你知道任何更好的和簡單的解決方案...

回答

1

您可以設置 'C5' 入索引,然後使用:

df1 = df.set_index('c5') 
df1.where(df1.apply(zscore).lt(1.5)).reset_index().reindex_axis(df.columns,1) 

輸出:

c1 c2 c3 c4 c5 
0 1.0 4.0 5.0 8.0 a 
1 2.0 3.0 6.0 7.0 b 
2 3.0 2.0 NaN 6.0 c 
3 4.0 1.0 8.0 NaN d 
+1

或者我們可以使用'df.select_dtypes(exclude = ['object'])'獲取數字列:) – Wen

+0

@Wen也是一個好主意! –