2016-05-03 87 views
5

我正在嘗試將scikit-learn's eigenface face recognition script用於我自己的圖像數據集(注意,這個腳本在我的Python 3上完美運行,sklearn 0.17)。如何修改scikit-learn的特徵臉識別示例

以下呼籲fetch_lfw_people()是可能需要修改,我努力讓腳本跳過這個來代替我自己的圖像文件夾。

我想要腳本 - 而不是從它下載的文件夾中提取數據 - 從我自己的數據集中獲取圖像,位於'/User/pepe/images/'

# Download the data, if not already on disk and load it as numpy arrays 

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) 

# introspect the images arrays to find the shapes (for plotting) 
n_samples, h, w = lfw_people.images.shape 

# for machine learning we use the 2 data directly (as relative pixel 
# positions info is ignored by this model) 
X = lfw_people.data 
n_features = X.shape[1] 

# the label to predict is the id of the person 
y = lfw_people.target 
target_names = lfw_people.target_names 
n_classes = target_names.shape[0] 

etc... 

對於如何解決這個問題你有什麼建議嗎?

從GitHub代碼中可以看出,中心部分實際上不是fetch_lfw_people()本身,而是具有附加功能的lfw.py文件。

+0

您是否使用自己的數據集來處理這個問題? – Maximilian

回答

1

我可以將其修改爲以下代碼,但我無法計算得分。我可以讀取圖像,並將其與示例圖像進行比較。我不知道如何使用記分器功能。

from time import time 
import numpy, os 
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix 
from sklearn.cross_validation import train_test_split 
from sklearn.grid_search import GridSearchCV 
from sklearn.decomposition import RandomizedPCA 
from sklearn.svm import SVC 
from PIL import Image 

#Path to the root image directory containing sub-directories of images 
path="<Path to Folder of Training Images>" 
testImage = "<Path to test image>" 

#Flat image Feature Vector 
X=[] 
#Int array of Label Vector 
Y=[] 

n_sample = 0 #Total number of Images 
h = 750 #Height of image in float 
w = 250 #Width of image in float 
n_features = 187500 #Length of feature vector 
target_names = [] #Array to store the names of the persons 
label_count = 0 
n_classes = 0 

for directory in os.listdir(path): 
    for file in os.listdir(path+directory): 
     print(path+directory+"/"+file) 
     img=Image.open(path+directory+"/"+file) 
     featurevector=numpy.array(img).flatten() 
     print len(featurevector) 
     X.append(featurevector) 
     Y.append(label_count) 
     n_sample = n_sample + 1 
    target_names.append(directory) 
    label_count=label_count+1 

print Y 
print target_names 
n_classes = len(target_names) 

############################################################################### 
# Split into a training set and a test set using a stratified k fold 

# split into a training and teststing set 
X_train, X_test, y_train, y_test = train_test_split(
    X, Y, test_size=0.25, random_state=42) 

############################################################################### 
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled 
# dataset): unsupervised feature extraction/dimensionality reduction 
n_components = 10 

print("Extracting the top %d eigenfaces from %d faces" 
     % (n_components, len(X_test))) 
t0 = time() 
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) 
print("done in %0.3fs" % (time() - t0)) 

eigenfaces = pca.components_.reshape((n_components, h, w)) 

print("Projecting the input data on the eigenfaces orthonormal basis") 
t0 = time() 
X_train_pca = pca.transform(X_train) 
X_test_pca = pca.transform(X_test) 
print("done in %0.3fs" % (time() - t0)) 

############################################################################### 
# Train a SVM classification model 
print("Fitting the classifier to the training set") 
t0 = time() 
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 
       'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } 
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) 
clf = clf.fit(X_train_pca, y_train) 
print("done in %0.3fs" % (time() - t0)) 
print("Best estimator found by grid search:") 
print(clf.best_estimator_) 

############################################################################### 
# Quantitative evaluation of the model quality on the test set 

print("Predicting people's names on the test set") 
t0 = time() 
y_pred = clf.predict(X_test_pca) 
print clf.score(X_test_pca,y_test) 
print("done in %0.3fs" % (time() - t0)) 
print(classification_report(y_test, y_pred, target_names=target_names)) 
print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) 

############################################################################### 
# Prediction of user based on the model 
test = [] 
testImage=Image.open(testImage) 
testImageFeatureVector=numpy.array(testImage).flatten() 
test.append(testImageFeatureVector) 
testImagePCA = pca.transform(test) 
testImagePredict=clf.predict(testImagePCA) 
#print clf.score(testImagePCA) 
#print clf.score(X_train_pca,testImagePCA) 
#print clf.best_params_ 
#print clf.best_score_ 
#print testImagePredict 
print target_names[testImagePredict[0]]