0
我最近再現了http://karpathy.github.io/2015/05/21/rnn-effectiveness/中描述的char-RNN的代碼。有些代碼已經在tensorflow中實現了,我所指的代碼是https://github.com/sherjilozair/char-rnn-tensorflow/blob/master/model.py。 我有關於在代碼上面提到如下的問題:在tensorflow中實現的學習速率初始化char-RNN
#1 loss = seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
#2 self.cost = tf.reduce_sum(loss)/args.batch_size/args.seq_length
#3 self.final_state = last_state
#4 self.lr = tf.Variable(0.0, trainable=False)
#5 tvars = tf.trainable_variables()
#6 grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
#7 optimizer = tf.train.AdamOptimizer(self.lr)
#8 self.train_op = optimizer.apply_gradients(zip(grads, tvars))
的問題是,在4:爲什麼我們設置學習速率爲0?將其設置爲0是初始化學習率的最佳方式?