我想在R中運行一個兩級probit最小二乘法迴歸法。有誰知道如何做到這一點?那裏有包嗎?我知道使用Stata可以做到這一點,所以我想可以用R來做。R中的兩級最小二乘法
6
A
回答
8
當你說'兩階段概率最小二乘'時,你可能想要更具體一些。既然你提到了一個實現這個的Stata程序,我猜你正在談論CDSIMEQ包,這個包實現了Heckit模型(又稱通用Tobit,又名Tobit類型II等)的Amemiya(1978)程序。正如Grant所說,systemfit會爲你做一個Tobit,但不會有兩個方程式。 MicEcon軟件包確實有一個Heckit(但是這個軟件包已經分裂了很多次,我不知道它現在在哪裏)。
如果你想CDSIMEQ做什麼,它可以很容易地在河中實現我寫的複製CDSIMEQ功能:
tspls <- function(formula1, formula2, data) {
# The Continous model
mf1 <- model.frame(formula1, data)
y1 <- model.response(mf1)
x1 <- model.matrix(attr(mf1, "terms"), mf1)
# The dicontionous model
mf2 <- model.frame(formula2, data)
y2 <- model.response(mf2)
x2 <- model.matrix(attr(mf2, "terms"), mf2)
# The matrix of all the exogenous variables
X <- cbind(x1, x2)
X <- X[, unique(colnames(X))]
J1 <- matrix(0, nrow = ncol(X), ncol = ncol(x1))
J2 <- matrix(0, nrow = ncol(X), ncol = ncol(x2))
for (i in 1:ncol(x1)) J1[match(colnames(x1)[i], colnames(X)), i] <- 1
for (i in 1:ncol(x2)) J2[match(colnames(x2)[i], colnames(X)), i] <- 1
# Step 1:
cat("\n\tNOW THE FIRST STAGE REGRESSION")
m1 <- lm(y1 ~ X - 1)
m2 <- glm(y2 ~ X - 1, family = binomial(link = "probit"))
print(summary(m1))
print(summary(m2))
yhat1 <- m1$fitted.values
yhat2 <- X %*% coef(m2)
PI1 <- m1$coefficients
PI2 <- m2$coefficients
V0 <- vcov(m2)
sigma1sq <- sum(m1$residuals^2)/m1$df.residual
sigma12 <- 1/length(y2) * sum(y2 * m1$residuals/dnorm(yhat2))
# Step 2:
cat("\n\tNOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS")
m1 <- lm(y1 ~ yhat2 + x1 - 1)
m2 <- glm(y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
sm1 <- summary(m1)
sm2 <- summary(m2)
print(sm1)
print(sm2)
# Step 3:
cat("\tNOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS\n\n")
gamma1 <- m1$coefficients[1]
gamma2 <- m2$coefficients[1]
cc <- sigma1sq - 2 * gamma1 * sigma12
dd <- gamma2^2 * sigma1sq - 2 * gamma2 * sigma12
H <- cbind(PI2, J1)
G <- cbind(PI1, J2)
XX <- crossprod(X) # X'X
HXXH <- solve(t(H) %*% XX %*% H) # (H'X'XH)^(-1)
HXXVXXH <- t(H) %*% XX %*% V0 %*% XX %*% H # H'X'V0X'XH
Valpha1 <- cc * HXXH + gamma1^2 * HXXH %*% HXXVXXH %*% HXXH
GV <- t(G) %*% solve(V0) # G'V0^(-1)
GVG <- solve(GV %*% G) # (G'V0^(-1)G)^(-1)
Valpha2 <- GVG + dd * GVG %*% GV %*% solve(XX) %*% solve(V0) %*% G %*% GVG
ans1 <- coef(sm1)
ans2 <- coef(sm2)
ans1[,2] <- sqrt(diag(Valpha1))
ans2[,2] <- sqrt(diag(Valpha2))
ans1[,3] <- ans1[,1]/ans1[,2]
ans2[,3] <- ans2[,1]/ans2[,2]
ans1[,4] <- 2 * pt(abs(ans1[,3]), m1$df.residual, lower.tail = FALSE)
ans2[,4] <- 2 * pnorm(abs(ans2[,3]), lower.tail = FALSE)
cat("Continuous:\n")
print(ans1)
cat("Dichotomous:\n")
print(ans2)
}
爲了便於比較,我們可以從CDSIMEQ在筆者複製其樣本article about the package。
> library(foreign)
> cdsimeq <- read.dta("http://www.stata-journal.com/software/sj3-2/st0038/cdsimeq.dta")
> tspls(continuous ~ exog3 + exog2 + exog1 + exog4,
+ dichotomous ~ exog1 + exog2 + exog5 + exog6 + exog7,
+ data = cdsimeq)
NOW THE FIRST STAGE REGRESSION
Call:
lm(formula = y1 ~ X - 1)
Residuals:
Min 1Q Median 3Q Max
-1.885921 -0.438579 -0.006262 0.432156 2.133738
Coefficients:
Estimate Std. Error t value Pr(>|t|)
X(Intercept) 0.010752 0.020620 0.521 0.602187
Xexog3 0.158469 0.021862 7.249 8.46e-13 ***
Xexog2 -0.009669 0.021666 -0.446 0.655488
Xexog1 0.159955 0.021260 7.524 1.19e-13 ***
Xexog4 0.316575 0.022456 14.097 < 2e-16 ***
Xexog5 0.497207 0.021356 23.282 < 2e-16 ***
Xexog6 -0.078017 0.021755 -3.586 0.000352 ***
Xexog7 0.161177 0.022103 7.292 6.23e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6488 on 992 degrees of freedom
Multiple R-squared: 0.5972, Adjusted R-squared: 0.594
F-statistic: 183.9 on 8 and 992 DF, p-value: < 2.2e-16
Call:
glm(formula = y2 ~ X - 1, family = binomial(link = "probit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.49531 -0.59244 0.01983 0.59708 2.41810
Coefficients:
Estimate Std. Error z value Pr(>|z|)
X(Intercept) 0.08352 0.05280 1.582 0.113692
Xexog3 0.21345 0.05678 3.759 0.000170 ***
Xexog2 0.21131 0.05471 3.862 0.000112 ***
Xexog1 0.45591 0.06023 7.570 3.75e-14 ***
Xexog4 0.39031 0.06173 6.322 2.57e-10 ***
Xexog5 0.75955 0.06427 11.818 < 2e-16 ***
Xexog6 0.85461 0.06831 12.510 < 2e-16 ***
Xexog7 -0.16691 0.05653 -2.953 0.003152 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1386.29 on 1000 degrees of freedom
Residual deviance: 754.14 on 992 degrees of freedom
AIC: 770.14
Number of Fisher Scoring iterations: 6
NOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS
Call:
lm(formula = y1 ~ yhat2 + x1 - 1)
Residuals:
Min 1Q Median 3Q Max
-2.32152 -0.53160 0.04886 0.53502 2.44818
Coefficients:
Estimate Std. Error t value Pr(>|t|)
yhat2 0.257592 0.021451 12.009 <2e-16 ***
x1(Intercept) 0.012185 0.024809 0.491 0.623
x1exog3 0.042520 0.026735 1.590 0.112
x1exog2 0.011854 0.026723 0.444 0.657
x1exog1 0.007773 0.028217 0.275 0.783
x1exog4 0.318636 0.028311 11.255 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7803 on 994 degrees of freedom
Multiple R-squared: 0.4163, Adjusted R-squared: 0.4128
F-statistic: 118.2 on 6 and 994 DF, p-value: < 2.2e-16
Call:
glm(formula = y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.49610 -0.58595 0.01969 0.59857 2.41281
Coefficients:
Estimate Std. Error z value Pr(>|z|)
yhat1 1.26287 0.16061 7.863 3.75e-15 ***
x2(Intercept) 0.07080 0.05276 1.342 0.179654
x2exog1 0.25093 0.06466 3.880 0.000104 ***
x2exog2 0.22604 0.05389 4.194 2.74e-05 ***
x2exog5 0.12912 0.09510 1.358 0.174544
x2exog6 0.95609 0.07172 13.331 < 2e-16 ***
x2exog7 -0.37128 0.06759 -5.493 3.94e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1386.29 on 1000 degrees of freedom
Residual deviance: 754.21 on 993 degrees of freedom
AIC: 768.21
Number of Fisher Scoring iterations: 6
NOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS
Continuous:
Estimate Std. Error t value Pr(>|t|)
yhat2 0.25759209 0.1043073 2.46955009 0.01369540
x1(Intercept) 0.01218500 0.1198713 0.10165068 0.91905445
x1exog3 0.04252006 0.1291588 0.32920764 0.74206810
x1exog2 0.01185438 0.1290754 0.09184073 0.92684309
x1exog1 0.00777347 0.1363643 0.05700519 0.95455252
x1exog4 0.31863627 0.1367881 2.32941597 0.02003661
Dichotomous:
Estimate Std. Error z value Pr(>|z|)
yhat1 1.26286574 0.7395166 1.7076909 0.0876937093
x2(Intercept) 0.07079775 0.2666447 0.2655134 0.7906139867
x2exog1 0.25092561 0.3126763 0.8025092 0.4222584495
x2exog2 0.22603717 0.2739307 0.8251618 0.4092797527
x2exog5 0.12911922 0.4822986 0.2677163 0.7889176766
x2exog6 0.95609385 0.2823662 3.3860070 0.0007091758
x2exog7 -0.37128221 0.3265478 -1.1369920 0.2555416141
2
2
systemfit也會伎倆。
相關問題
- 1. 加權最小二乘 - R
- 2. 總最小二乘法,使用R
- 3. 分段最小二乘法
- 4. 最小二乘法3D
- 5. R:部分最小二乘迴歸
- 6. 計算y_pred最小二乘迴歸(R)?
- 7. Python中的增量最小二乘法
- 8. python中的最小二乘法
- 9. Octave中的魯棒最小二乘法
- 10. R更快的方法while循環最小二乘函數
- 11. R:帶x和y誤差的加權最小二乘法
- 12. 最小二乘:Python的
- 13. 兩階段的Probit最小二乘在R:CDSIMEQ代碼中的R由eyjo用戶
- 14. R非線性最小二乘法(nls)模型擬合
- 15. R中的非線性最小二乘曲線擬合
- 16. 如何計算R中的總最小二乘? (正交回歸)
- 17. R中的部分最小二乘分類
- 18. SPSS和普通最小二乘法
- 19. 線性最小二乘法擬合
- 20. 快速約束最小二乘法
- 21. 最小二乘方法缺乏數據
- 22. L1正則化最小二乘法
- 23. 多變量Python最小二乘法
- 24. 特徵庫 - 最小二乘法
- 25. 嶺係數大於最小二乘法
- 26. 整數線性最小二乘法
- 27. 最小二乘法曲線擬合
- 28. 指數擬合最小二乘法Python
- 29. 採用最小二乘
- 30. python:最小二乘估計?
謝謝,我會試試看。這似乎符合我的需求。 – 2010-10-02 01:59:46