2012-12-10 54 views
4
# Import plotting routines 
from pylab import * 

# 1D ODE that has a pitchfork bifurcation 
# x_dot = r * x - x * x * x 
def PitchforkODE(r,x): 
return r * x - x * x * x 

# 1D Euler 
def OneDEuler(r,x,f,dt): 
    return x + dt * f(r,x) 

# Improved 1D Euler 
def ImprovedOneDEuler(r,x,f,dt): 
xtemp = x + dt * f(r,x) 
return x + dt * (f(r,x) + f(r,xtemp))/2.0 

# 4th Order Runge-Kutta Euler Method 
def RKOneD(r,x,f,dt): 
k1 = dt * f(r,x) 
k2 = dt * f(r,x + k1/2.0) 
k3 = dt * f(r,x + k2/2.0) 
k4 = dt * f(r,x + k3) 
return x + (k1 + 2.0 * k2 + 2.0 * k3 + k4)/6.0 

# Integrator function that calls one of the three functions 
# Fills up array 
def Integrator(x1,x2,x3,x4,t,N,Func,dt): 
    for n in xrange(0,N): 
     x1.append(Func(r,x1[n],PitchforkODE,dt)) 
     x2.append(Func(r,x2[n],PitchforkODE,dt)) 
     x3.append(Func(r,x3[n],PitchforkODE,dt)) 
     x4.append(Func(r,x4[n],PitchforkODE,dt)) 
     t.append(t[n] + dt) 

# Simulation parameters 
# Integration time step 
dt = 0.2 


# Control parameter of the pitchfork ODE: 
r = 1.0 

# Set up arrays of iterates for four different initital conditions 
x1 = [ 0.1] 
x2 = [-0.1] 
x3 = [ 2.1] 
x4 = [-2.1] 
x5 = [ 0.1] 
x6 = [-0.1] 
x7 = [ 2.1] 
x8 = [-2.1] 
x9 = [ 0.1] 
x10 = [-0.1] 
x11 = [ 2.1] 
x12 = [-2.1] 

# Time 
t = [ 0.0] 

# The number of time steps to integrate over 
N = 50 

#The different functions 
a = OneDEuler 
b = ImprovedOneDEuler 
c = RKOneD 

# Setup the plot 
subplot(3,1,1) 
Func = a 
Integrator(x1,x2,x3,x4,t,N,Func,dt) 
ylabel('x(t)') # set y-axis label 
title(str(Func.func_name) + ': Pitchfork ODE at r= ' + str(r)) # set plot title 
axis([0.0,dt*(N+1),-2.0,2.0]) 
# Plot the time series 
plot(t,x1,'b') 
plot(t,x2,'r') 
plot(t,x3,'g') 
plot(t,x4,'m') 

subplot(212) 
Func = b 
Integrator(x5,x6,x7,x8,t,N,Func,dt) 
ylabel('x(t)') # set y-axis label 
title(str(Func.func_name) + ': Pitchfork ODE at r= ' + str(r)) # set plot title 
axis([0.0,dt*(N+1),-2.0,2.0]) 
# Plot the time series 
plot(t,x5,'b') 
plot(t,x6,'r') 
plot(t,x7,'g') 
plot(t,x8,'m') 

subplot(3,1,3) 
Func = c 
Integrator(x9,x10,x11,x12,t,N,Func,dt) 
xlabel('Time t') # set x-axis label 
ylabel('x(t)') # set y-axis label 
title(str(Func.func_name) + ': Pitchfork ODE at r= ' + str(r)) # set plot title 
axis([0.0,dt*(N+1),-2.0,2.0]) 
# Plot the time series 
plot(t,x9,'b') 
plot(t,x10,'r') 
plot(t,x11,'g') 
plot(t,x12,'m') 

我想在同一個顯示窗口上繪製3個不同的子圖。一個在另一個之上。所以基本上,3行1列。每個圖表代表不同的函數a,b或c。每個小區應該有4條不同的路線。如何在同一個顯示窗口中繪製3個子圖? python

回答

14

嗯......看起來你正在做正確的繪圖部分。下面的代碼給你下面的圖。

from pylab import * 
subplot(3,1,1) 
plot(arange(33)) 
subplot(3,1,2) 
plot(arange(44)) 
subplot(3,1,3) 
plot(arange(55),'r') 

enter image description here

您的代碼確實有一些問題,不過,我發現的第一件事情是,你的T和X矢量大小也不一樣。

+0

謝謝!!! t矢量絕對不是相同的大小!你知道如何在子圖之間添加更多空間嗎? – Randy

+0

當然,請嘗試matplotlib參考,[subplots_adjust](http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplots_adjust) – Matt

+2

以供將來參考添加圖之間的空間:'plt.subplots_adjust(hspace = 1 )'爲'hspace'選擇一個值 – Plug4

相關問題