雖然從TensorFlow在我的數據集運行wide_n_deep_tutorial程序,會顯示以下錯誤。TypeError:簽名不匹配。關鍵字必須是D型細胞<D型:「串」>,有<D類:「Int64的」>
"TypeError: Signature mismatch. Keys must be dtype <dtype: 'string'>, got <dtype:'int64'>"
以下是代碼片段:
def input_fn(df):
"""Input builder function."""
# Creates a dictionary mapping from each continuous feature column name (k) to
# the values of that column stored in a constant Tensor.
continuous_cols = {k: tf.constant(df[k].values) for k in CONTINUOUS_COLUMNS}
# Creates a dictionary mapping from each categorical feature column name (k)
# to the values of that column stored in a tf.SparseTensor.
categorical_cols = {k: tf.SparseTensor(
indices=[[i, 0] for i in range(df[k].size)],
values=df[k].values,
shape=[df[k].size, 1])
for k in CATEGORICAL_COLUMNS}
# Merges the two dictionaries into one.
feature_cols = dict(continuous_cols)
feature_cols.update(categorical_cols)
# Converts the label column into a constant Tensor.
label = tf.constant(df[LABEL_COLUMN].values)
# Returns the feature columns and the label.
return feature_cols, label
def train_and_eval():
"""Train and evaluate the model."""
train_file_name, test_file_name = maybe_download()
df_train=train_file_name
df_test=test_file_name
df_train[LABEL_COLUMN] = (
df_train["impression_flag"].apply(lambda x: "generated" in x)).astype(str)
df_test[LABEL_COLUMN] = (
df_test["impression_flag"].apply(lambda x: "generated" in x)).astype(str)
model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir
print("model directory = %s" % model_dir)
m = build_estimator(model_dir)
print('model succesfully build!')
m.fit(input_fn=lambda: input_fn(df_train), steps=FLAGS.train_steps)
print('model fitted!!')
results = m.evaluate(input_fn=lambda: input_fn(df_test), steps=1)
for key in sorted(results):
print("%s: %s" % (key, results[key]))
任何幫助表示讚賞。