0
我試圖寫一個反向傳播算法,並且在嘗試執行矩陣乘法時遇到錯誤。矩陣乘法類型錯誤
我創建了下面的簡單示例與
# necessary functions for this example
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))
def prime(z):
return sigmoid(z) * (1-sigmoid(z))
def cost_derivative(output_activations, y):
return (output_activations-y)
# Mock weight and bias matrices
weights = [np.array([[ 1, 0, 2],
[2, -1, 0],
[4, -1, 0],
[1, 3, -2],
[0, 0, -1]]),
np.array([2, 0, -1, -1, 2])]
biases = [np.array([-1, 2, 0, 0, 4]), np.array([-2])]
# The mock training example
q = [(np.array([1, -2, 3]), np.array([0])),
(np.array([2, -3, 5]), np.array([1])),
(np.array([3, 6, -1]), np.array([1])),
(np.array([4, -1, -1]), np.array([0]))]
for x, y in q:
activation = x
activations = [x]
zs = []
for w, b in zip(weights, biases):
z = np.dot(w, activation) + b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
delta = cost_derivative(activations[-1], y) * prime(zs[-1])
print(np.dot(np.transpose(weights[-1])), delta)
工作,我得到以下錯誤:
TypeError: Required argument 'b' (pos 2) not found
我打印的輸出都調換了weights
這是一個5×2矩陣和delta
是一個2×1。輸出爲:
np.transpose(weights[-1]) = [[ 2 -3]
[ 0 2]
[-1 0]
[-1 1]
[ 2 -1]]
和
delta = [-0.14342712 -0.03761959]
所以乘法應該工作,併產生一個5X1矩陣
哪裏'sigmoid'從何而來?這是重要的嗎? – mitoRibo
對不起,忘了複製那部分代碼 – Lukasz