1
我想使用sklearn熱門編碼器進行狀態的熱編碼。這裏是我的熊貓數據框:一個使用sklearn的國家的熱門編碼
State
0 FL
1 CA
2 MD
3 NY
4 NY
5 NY
6 NY
我寫道:
from sklearn.preprocessing import OneHotEncoder
enc=OneHotEncoder(sparse=False)
enc.fit(data)
而這裏的錯誤:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-78-a0b336acd757> in <module>()
----> 1 enc.fit(data)
/anaconda/envs/env3_insight/lib/python3.6/site-packages/sklearn/preprocessing/data.py in fit(self, X, y)
1842 self
1843 """
-> 1844 self.fit_transform(X)
1845 return self
1846
/anaconda/envs/env3_insight/lib/python3.6/site-packages/sklearn/preprocessing/data.py in fit_transform(self, X, y)
1900 """
1901 return _transform_selected(X, self._fit_transform,
-> 1902 self.categorical_features, copy=True)
1903
1904 def _transform(self, X):
/anaconda/envs/env3_insight/lib/python3.6/site-packages/sklearn/preprocessing/data.py in _transform_selected(X, transform, selected, copy)
1695 X : array or sparse matrix, shape=(n_samples, n_features_new)
1696 """
-> 1697 X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
1698
1699 if isinstance(selected, six.string_types) and selected == "all":
/anaconda/envs/env3_insight/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
380 force_all_finite)
381 else:
--> 382 array = np.array(array, dtype=dtype, order=order, copy=copy)
383
384 if ensure_2d:
ValueError: could not convert string to float: 'NY'
我不明白。我認爲做一個熱門編碼的重點就是從分類,通常是字符串信息轉換爲數字...爲什麼它說我不能將字符串轉換爲浮點數,然後呢?
首先,您需要使用LabelEncoder。 – ayhan
OneHotEncoder,[文檔建議](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html)只接受數字數據。首先爲您的數據分配一些數值,如'FL'爲1,'CA'爲2等,然後使用OneHotEncoding。按照@ayhan的建議將字符串轉換爲數字使用LabelEncoder。 –