我試圖通過這個代碼利用決策樹R中建立的預測模型:混淆矩陣輸出誤差
library(rpart)
library(caret)
DataYesNo<-read.csv('DataYesNo.csv',header=T)
worktrain<- sample(1:50,40)
worktest <- setdiff(1:50,worktrain)
M <- ncol(DataYesNo)
input <- names(DataYesNo)[1:(M-1)]
target <- "ICUtransfer"
tree<- rpart(ICUtransfer~Temperature+RespiratoryRate+HeartRate+SystolicBP+OxygenSaturations,
data=DataYesNo[worktrain, c(input,target)],
method="class",
parms=list(split="information"),
control=rpart.control(usesurrogate=0, maxsurrogate=0))
fitted <- predict(tree, DataYesNo[worktest, c(input,target)])
cmatrix <- confusionMatrix(fitted, worktest$ICUtransfer)
print(cmatrix)
tree
plot(tree)
text(tree)
我得到了錯誤的位置:CMATRIX < - 混淆矩陣(安裝,worktest $ ICUtransfer) 「$操作原子向量無效「 請幫我解決這個問題? 問候,
DataYesNo[worktest,]
Temperature RespiratoryRate HeartRate SystolicBP OxygenSaturations ICUtransfer
11 36.3 26 65 140 97 no
15 37.3 20 80 129 99 no
21 36.9 20 72 154 95 no
26 36.0 28 56 199 97 no
30 36.9 20 72 150 96 no
34 36.6 16 97 118 95 yes
36 36.0 20 77 145 97 yes
38 36.0 20 77 145 97 yes
43 36.3 28 98 116 95 yes
47 36.0 20 77 145 97 yes
我嘗試這一行:
cmatrix <- confusionMatrix(fitted, DataYesNo[worktest,]$ICUtransfer)
但我得到這個錯誤:在confusionMatrix.default(嵌合,DataYesNo [worktest,] $ ICUtransfer)錯誤: 的數據和參考因素必須具有相同數量的水平
請任何人都可以幫我嗎?
請發佈完整的錯誤日誌/堆棧跟蹤。 – Sufian
我該怎麼做? – Johan