我剛剛在Windows 2.7.10環境下通過Anaconda安裝了numpy-1.10.1。令我驚訝的是,我發現它具有MKL開箱即用(參見下面的配置)。我用Gohlke的numpy + mkl-1.10.1安裝了「手動」Python 2.7.10安裝版本,運行a benchmark,它們顯示的數字相同。配置是相同的。在Anaconda默認numpy vs加速
我想知道Anaconda加速包爲numpy帶來了什麼?
阿納康達numpy的-1.10.1配置
>>> np.__config__.show()
lapack_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd', 'mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
blas_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
openblas_lapack_info:
NOT AVAILABLE
lapack_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd', 'mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
blas_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
(有趣的是,報告Link MKL to an installed Numpy in Anaconda?不同的配置。)
Gohlke numpy的-1.10.1 + MKL配置
>>> np.__config__.show()
lapack_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd', 'mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
blas_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
openblas_lapack_info:
NOT AVAILABLE
lapack_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd', 'mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
blas_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
你說這個? http://docs.continuum.io/accelerate/index ---頁面上的文檔可能解釋了它的功能。 –
@pv。我只對numpy感興趣。您提到的頁面表示,加速包括MKL的numpy。但是我看到的是,即使沒有在Anaconda加速膨脹,MKL也是如此。除非有人在這裏解釋它,否則我將通過加速免費試用來運行基準測試。 – ilya