2016-12-05 106 views
-2

我工作的一個項目使用CUDA C的問題是,當我嘗試請編譯程序我得到這個錯誤訓練多層神經網絡:未定義的參考`設置(INT,CHAR **)」

facetrain.o: In function `backprop_face': 
facetrain.c:(.text+0x127): undefined reference to `bpnn_train_kernel' 
backprop_kernel.o: In function `bpnn_train_kernel(BPNN*, float*, float*)': 
tmpxft_0002fa78_00000000-4_backprop_kernel.cudafe1.cpp:(.text+0x6e6): undefined reference to `bpnn_layerforward(float*, float*, float**, int, int)' 
tmpxft_0002fa78_00000000-4_backprop_kernel.cudafe1.cpp:(.text+0x703): undefined reference to `bpnn_output_error(float*, float*, float*, int, float*)' 
tmpxft_0002fa78_00000000-4_backprop_kernel.cudafe1.cpp:(.text+0x72a): undefined reference to `bpnn_hidden_error(float*, int, float*, int, float**, float*, float*)' 
tmpxft_0002fa78_00000000-4_backprop_kernel.cudafe1.cpp:(.text+0x745): undefined reference to `bpnn_adjust_weights(float*, int, float*, int, float**, float**)' 
backprop_kernel.o: In function `main': 
tmpxft_0002fa78_00000000-4_backprop_kernel.cudafe1.cpp:(.text+0x9a5): undefined reference to `setup(int, char**)' 
collect2: ld returned 1 exit status 
make: *** [backprop] Error 1 

這裏是backdrop_kernel.cu的代碼:

//////////////////////////////////////////////////////////////////////////////// 

extern void bpnn_layerforward(float *l1, float *l2, float **conn, int n1, int n2); 

extern void bpnn_output_error(float *delta, float *target, float *output, int nj, float *err); 

extern void bpnn_hidden_error(float *delta_h, int nh, float *delta_o, int no, float **who, float *hidden, float *err); 

extern void bpnn_adjust_weights(float *delta, int ndelta, float *ly, int nly, float **w, float **oldw); 


extern int setup(int argc, char** argv); 

extern float **alloc_2d_dbl(int m, int n); 

extern float squash(float x); 

double gettime() { 
    struct timeval t; 
    gettimeofday(&t,NULL); 
    return t.tv_sec+t.tv_usec*1e-6; 
} 

unsigned int num_threads = 0; 
unsigned int num_blocks = 0; 

//////////////////////////////////////////////////////////////////////////////// 
// Program main 
//////////////////////////////////////////////////////////////////////////////// 
int 
main(int argc, char** argv) 
{ 
    setup(argc, argv); 
} 


void bpnn_train_kernel(BPNN *net, float *eo, float *eh) 
{ 
    int in, hid, out; 
    float out_err, hid_err; 

    in = net->input_n; 
    hid = net->hidden_n; 
    out = net->output_n; 

#ifdef GPU 
    int m = 0; 
    float *input_hidden_cuda; 
    float *input_cuda; 
    float *output_hidden_cuda; 
    float *partial_sum; 
    float *hidden_partial_sum; 
    float *hidden_delta_cuda; 
    float *input_prev_weights_cuda; 
    float sum; 
    float *input_weights_one_dim; 
    float *input_weights_prev_one_dim; 
    num_blocks = in/16; 
    dim3 grid(1 , num_blocks); 
    dim3 threads(16 , 16); 

    input_weights_one_dim = (float *) malloc((in + 1)* (hid + 1) * sizeof(float)); 
    input_weights_prev_one_dim = (float *) malloc((in + 1)* (hid + 1) * sizeof(float)); 
    partial_sum = (float *) malloc(num_blocks * WIDTH * sizeof(float)); 

    // this preprocessing stage is added to correct the bugs of wrong memcopy using two-dimensional net->inputweights 
    for (int k = 0; k <= in; k++) { 
    for (int j = 0; j <= hid; j++) { 
     input_weights_one_dim[m] = net->input_weights[k][j]; 
     input_weights_prev_one_dim[m] = net-> input_prev_weights[k][j]; 
     m++; 
    } 
    } 

    cudaMalloc((void**) &input_cuda, (in + 1) * sizeof(float)); 
    cudaMalloc((void**) &output_hidden_cuda, (hid + 1) * sizeof(float)); 
    cudaMalloc((void**) &input_hidden_cuda, (in + 1) * (hid + 1) * sizeof(float)); 
    cudaMalloc((void**) &hidden_partial_sum, num_blocks * WIDTH * sizeof(float)); 


#endif 

#ifdef CPU 

    printf("Performing CPU computation\n"); 
    bpnn_layerforward(net->input_units, net->hidden_units,net->input_weights, in, hid); 

#endif 

#ifdef GPU 

    printf("Performing GPU computation\n"); 

    //printf("in= %d, hid = %d, numblocks = %d\n", in, hid, num_blocks); 

    cudaMemcpy(input_cuda, net->input_units, (in + 1) * sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(input_hidden_cuda, input_weights_one_dim, (in + 1) * (hid + 1) * sizeof(float), cudaMemcpyHostToDevice); 



    bpnn_layerforward_CUDA<<< grid, threads >>>(input_cuda, 
               output_hidden_cuda, 
               input_hidden_cuda, 
               hidden_partial_sum, 
               in, 
               hid); 

    cudaThreadSynchronize(); 

    cudaError_t error = cudaGetLastError(); 
    if (error != cudaSuccess) { 
     printf("bpnn kernel error: %s\n", cudaGetErrorString(error)); 
     exit(EXIT_FAILURE); 
    } 

    cudaMemcpy(partial_sum, hidden_partial_sum, num_blocks * WIDTH * sizeof(float), cudaMemcpyDeviceToHost); 

    for (int j = 1; j <= hid; j++) { 
    sum = 0.0; 
    for (int k = 0; k < num_blocks; k++) { 
     sum += partial_sum[k * hid + j-1] ; 
    } 
    sum += net->input_weights[0][j]; 
    net-> hidden_units[j] = float(1.0/(1.0 + exp(-sum))); 
    } 
    #endif 

    bpnn_layerforward(net->hidden_units, net->output_units, net->hidden_weights, hid, out); 
    bpnn_output_error(net->output_delta, net->target, net->output_units, out, &out_err); 
    bpnn_hidden_error(net->hidden_delta, hid, net->output_delta, out, net->hidden_weights, net->hidden_units, &hid_err); 
    bpnn_adjust_weights(net->output_delta, out, net->hidden_units, hid, net->hidden_weights, net->hidden_prev_weights); 

#ifdef CPU 

    bpnn_adjust_weights(net->hidden_delta, hid, net->input_units, in, net->input_weights, net->input_prev_weights); 

#endif 


#ifdef GPU 

    cudaMalloc((void**) &hidden_delta_cuda, (hid + 1) * sizeof(float)); 
    cudaMalloc((void**) &input_prev_weights_cuda, (in + 1) * (hid + 1) * sizeof(float)); 

    cudaMemcpy(hidden_delta_cuda, net->hidden_delta, (hid + 1) * sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(input_prev_weights_cuda, input_weights_prev_one_dim, (in + 1) * (hid + 1) * sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(input_hidden_cuda, input_weights_one_dim, (in + 1) * (hid + 1) * sizeof(float), cudaMemcpyHostToDevice); 


    bpnn_adjust_weights_cuda<<< grid, threads >>>(hidden_delta_cuda, 
               hid, 
               input_cuda, 
               in, 
               input_hidden_cuda, 
               input_prev_weights_cuda 
               ); 

    cudaMemcpy(net->input_units, input_cuda, (in + 1) * sizeof(float), cudaMemcpyDeviceToHost); 
    cudaMemcpy(input_weights_one_dim, input_hidden_cuda, (in + 1) * (hid + 1) * sizeof(float), cudaMemcpyDeviceToHost); 

    cudaFree(input_cuda); 
    cudaFree(output_hidden_cuda); 
    cudaFree(input_hidden_cuda); 
    cudaFree(hidden_partial_sum); 
    cudaFree(input_prev_weights_cuda); 
    cudaFree(hidden_delta_cuda); 

    free(partial_sum); 
    free(input_weights_one_dim); 
    free(input_weights_prev_one_dim); 

#endif 

} 

如果您需要了解更多信息或代碼,讓我知道。提前致謝!

+3

歡迎來到Stack Overflow!請參閱[如何完成最小,完整和可驗證示例](/ help/mcve)。 –

回答

0

這是一個連接錯誤。 ld是鏈接器,所以如果你得到以「ld返回1退出狀態」結尾的錯誤消息,那告訴你這是一個鏈接器錯誤。

錯誤消息告訴你,沒有你鏈接到的目標文件包含bpnn_layerforward)的定義(,bpnn_output_error(),.

的原因是你已經定義的函數被調用bpnn_layerforward(),bpnn_output_error(),. (換句話說:在調用函數時拼錯函數名稱(大概也在頭文件中 - 否則在編譯時會得到不同的錯誤))。

我覺得這些功能庫的一部分,你必須包括該庫當你執行。

+1

他可能沒有拼寫錯誤,它可能是一個C/C++名稱重整問題,即他忘了'爲extern「C」 {'那是需要C++跳過名字改編。 http://stackoverflow.com/questions/1041866/in-c-source-what-is-the-effect-of-extern-c –