-1
parts_list = imp_parts_df['Parts'].tolist()
sub_week_list = ['2016-12-11', '2016-12-04', '2016-11-27', '2016-11-20', '2016-11-13']
i = 0
start = DT.datetime.now()
for p in parts_list:
for thisdate in sub_week_list:
thisweek_start = pd.to_datetime(thisdate, format='%Y-%m-%d') #'2016/12/11'
thisweek_end = thisweek_start + DT.timedelta(days=7) # add 7 days to the week date
val_shipped = len(shipment_df[(shipment_df['loc'] == 'USW1') & (shipment_df['part'] == str(p)) & (shipment_df['shipped_date'] >= thisweek_start) & (shipment_df['shipped_date'] < thisweek_end)])
print (DT.datetime.now() - start).total_seconds()
shipment_df大約有35000條記錄pythhon數據幀過濾條件:任何更快的方法
PARTLIST具有436個零件
sub_week_list具有5日在其
花了整體438.13秒到運行此代碼
有沒有更快的方法來做到這一點
更快的方式做什麼?您將一個整數分配給436次相同的變量。 – piRSquared
請參閱編輯後的版本.....我的問題是爲什麼它需要這麼多時間來過濾條件運行....通常循環運行良好,但是當我把這個過濾標準的數據幀...它的採取時間...有更快的過濾方式 – Santor