我首先將Knownvalue
系列轉換爲等於其截斷值除以十的整數列表(例如27.87 // 10 = 2)。這些桶表示所需列位置的整數。由於Knownvalue
位於第一列,因此我將這些值加1。
接下來,我列舉了這些bin值,它們有效地給出了行和列整數索引的元組對。我用iat
到這些位置相等的值設置爲1
import pandas as pd
import numpy as np
# Create some sample data.
df_vals = pd.DataFrame({'Knownvalue': np.random.random(5) * 50})
df = pd.concat([df_vals, pd.DataFrame(np.zeros((5, 5)), columns=list('ABCDE'))], axis=1)
# Create desired column locations based on the `Knownvalue`.
bins = (df.Knownvalue // 10).astype('int').tolist()
>>> bins
[4, 3, 0, 1, 0]
# Set these locations equal to 1.
for idx, col in enumerate(bins):
df.iat[idx, col + 1] = 1 # The first column is the `Knownvalue`, hence col + 1
>>> df
Knownvalue A B C D E
0 47.353937 0 0 0 0 1
1 37.460338 0 0 0 1 0
2 3.797964 1 0 0 0 0
3 18.323131 0 1 0 0 0
4 7.927030 1 0 0 0 0
(注意:文字比圖片更方便,因爲您可以複製和粘貼文本,因此我已經回覆到文本版本。) – DSM