所以我得到這個錯誤tensorflow(1.2)(蟒蛇3):無法將函數轉換爲張量或操作。 Tensorflow錯誤
WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
Traceback (most recent call last):
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 267, in __init__
fetch, allow_tensor=True, allow_operation=True))
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2584, in as_graph_element
return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2673, in _as_graph_element_locked
% (type(obj).__name__, types_str))
TypeError: Can not convert a function into a Tensor or Operation.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/theshoutingparrot/Desktop/Programming/Python/MachineLearningPY/Tensorflow/NumberClassifier.py", line 54, in <module>
summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 984, in _run
self._graph, fetches, feed_dict_string, feed_handles=feed_handles)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 410, in __init__
self._fetch_mapper = _FetchMapper.for_fetch(fetches)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 238, in for_fetch
return _ElementFetchMapper(fetches, contraction_fn)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 271, in __init__
% (fetch, type(fetch), str(e)))
TypeError: Fetch argument <function merge_all at 0x7f7d0f3d8620> has invalid type <class 'function'>, must be a string or Tensor. (Can not convert a function into a Tensor or Operation.)
而這裏的代碼:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
learning_rate = 0.01
training_iteration = 30
batch_size = 100
display_step = 2
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
with tf.name_scope("Wx_b") as scope:
model = tf.nn.softmax(tf.matmul(x, W) + b)
w_h = tf.summary.histogram("weights", W)
b_h = tf.summary.histogram("biases", b)
with tf.name_scope("cost_function") as scope:
cost_function = -tf.reduce_sum(y*tf.log(model))
tf.summary.scalar("cost_function", cost_function)
with tf.name_scope("train") as scope:
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
init = tf.global_variables_initializer() #tf.initialize_all_variables()
merged_summary_op = tf.summary.merge_all
#Launch the graph
with tf.Session() as sess:
sess.run(init)
summary_writer = tf.summary.FileWriter('/home/theshoutingparrot/work/logs', graph_def=sess.graph_def)
for iteration in range(training_iteration):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
avg_cost += sess.run(cost_function, feed_dict={x: batch_xs, y: batch_ys})/total_batch
summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
summary_writer.add_summary(summary_str, iteration*total_batch + i)
if iteration % display_step == 0:
print("Iteration", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))
print("Tuning completed!")
predictions = tf.equal(tf.argmax(model,1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(predictions, "float"))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
我是新來tensorflow。我「得到了」 https://www.youtube.com/watch?v=2FmcHiLCwTU&list=PL2-dafEMk2A7EEME489DsI468AB0wQsMV
所以這是他(指人在教程(斯拉吉拉瓦爾))採用tensorflow的舊版本,從這個視頻(教程)這段代碼爲什麼有些代碼是這樣的不同(例如):
w_h = tf.histogram_summary("weights", W) => w_h = tf.summary.histogram("weights", W)
更多信息:
我試圖運行與Python(2.7相同的代碼)(對於Python 2.7),當然我已經下載tensorflow但它給了我同樣的錯誤。
任何幫助都會很好,Thx提前。
你不需要寫它已經解決了,這是明確的,因爲你已經接受了答案。 – coder