1
我有一個CNN圖像訓練。我還獲得了臉部的幾何圖形(68x2-68個點,x,y座標)。我想在所有卷積層之後編碼幾何圖形,並在完全連接的圖層中使用它們。我正在使用vggFace模型。Keras:將元數據連接成CNN
'''
Load the model
'''
vgg_model = VGGFace(
include_top=False,
input_shape=(img_width, img_height, 3))
'''
Customize the model
'''
# Add geometry input
geo_input = Input(shape=(1,136,1))
geo_input = Flatten(name='flatten')(geo_input)
last_layer = vgg_model.get_layer('pool5').output
x = Flatten(name='flatten')(last_layer)
x = concatenate([x, geo_input], axis=1)
x = Dense(hidden_dim, activation='relu', name='fc6')(x)
x = Dense(hidden_dim, activation='relu', name='fc7')(x)
out = Dense(nb_class, activation='softmax', name='fc8')(x)
custom_vgg_model = Model(
[vgg_model.input, geo_input],
out)
但我收到以下錯誤:
TypeError: Input layers to a `Model` must be `InputLayer` objects. Received inputs: [<tf.Tensor 'input_1:0' shape=(?, 224, 224, 3) dtype=float32>, <tf.Tensor 'flatten/Reshape:0' shape=(?, ?) dtype=float32>]. Input 1 (0-based) originates from layer type `Flatten`.