2014-12-11 73 views
0

如何證明(R-> P)在Coq中。我是這方面的初學者,並且不太瞭解這個工具。這是我寫的:如何證明(R - > P)[Coq證明助理]?

Require Import Classical. 

Theorem intro_neg : forall P Q : Prop,(P -> Q /\ ~Q) -> ~P. 
Proof. 
intros P Q H. 
intro HP. 
apply H in HP. 
inversion HP. 
apply H1. 
assumption. 
Qed. 

Section Question1. 
Variables P Q R: Prop. 
Hypotheses H1 : R -> P \/ Q. 
Hypotheses H2 : R -> ~Q. 
Theorem trans : R -> P. 
Proof. 
intro HR. 
apply NNPP. 
apply intro_neg with (Q := Q). 
intro HNP. 

我只能說到這一點。

在這一點上,子目標是:

1 subgoals 
P : Prop 
Q : Prop 
R : Prop 
H1 : R -> P \/ Q 
H2 : R -> ~ Q 
HR : R 
HNP : ~ P 
______________________________________(1/1) 
Q /\ ~ Q 

回答

2

您可以使用同田自動證明這一點:

Section Question1. 
Variables P Q R: Prop. 
Hypotheses H1 : R -> P \/ Q. 
Hypotheses H2 : R -> ~Q. 
Theorem trans : R -> P. 
Proof. 
intro HR. 
tauto. 
Qed. 

如果你想手動證明這一點,H1說,鑑於R,是p或者Q是真的。所以如果你破壞H1,你會得到3個目標。一個用來證明前提(R),一個用or的左邊結論(P)來證明目標(P),另一個用正確結論(Q)來證明目標(P)。

Theorem trans' : R -> P. 
Proof. 
intro HR. 
destruct H1. 
- (* Prove the premise, R *) 
    assumption. 
- (* Prove that P is true given that P is true *) 
    assumption. 
- (* Prove that P is true given that Q is false *) 
    contradiction H2. 
Qed. 
End Question1. 
+0

完美,謝謝你的男人。 – 2014-12-11 12:03:02