2
我正在處理一些我以csv格式從網上下載的數據。原始數據如下所示。如何在沒有解析日期字符串的情況下調用pandas read_csv()
Test Data
"Date","T1","T2","T3","T4","T5","T6","T7","T8"
"105/11/01","123,855","1,150,909","9.30","9.36","9.27","9.28","-0.06","60",
"105/11/02","114,385","1,062,118","9.26","9.42","9.23","9.31","+0.03","78",
"105/11/03","71,350","659,848","9.30","9.30","9.20","9.28","-0.03","42",
我用下面的代碼讀取它
import pandas as pd
df = pd.read_csv("test.csv", skiprows=[0], usecols=[0,3,4,5])
我也曾嘗試使用
import pandas as pd
df = pd.read_csv("test.csv", skiprows=[0], usecols=[0,3,4,5], keep_date_col=True)
我總是得到下面的結果
Date T3 T4 T5
105/11/01 9.30 9.36 9.27 NaN
105/11/02 9.26 9.42 9.23 NaN
105/11/03 9.30 9.30 9.20 NaN
這是什麼我想得到
Date T3 T4 T5
105/11/01 9.30 9.36 9.27
105/11/02 9.26 9.42 9.23
105/11/03 9.30 9.30 9.20
正如你可以看到大熊貓治療日期字符串的數據不是一個組成部分,轉移該指數將一個左邊這導致最後一列是NaN
。
我已閱讀read_csv()上的熊貓文檔,發現它可以用parse_dates
,keep_date_col
參數解析日期,但有什麼辦法可以解析日期嗎?
我認爲你的問題完全是關於數據行,但沒有尾隨分隔符標題。請參閱http://stackoverflow.com/questions/13719946/python-pandas-trailing-delimiter-confuses-read-csv –