2
我有一個爲我準備好的數據框,顯然有些列由一些基礎機制組合在一起。如何以這種方式對列名進行分組,以及如何再次將它們分開?如何在此數據框中對列名進行分組
寫y.1$Address
訪問,與一個「Address.XXX」開頭的所有列
> y.1
Address.streetAddress Address.position.latitude Address.position.longitude Address.namedAreas Address.region.municipalityName Address.region.countyName Address.ocean nothing rent floor livingArea
19 Västmannagatan 85C 59.34500 18.04370 Vasastan Stockholm Stockholms län 2325 4100000 1586 1.0 40.0
29 Redargatan 3 59.30279 18.09048 Hammarby Sjöstad Stockholm Stockholms län 1570 2800000 2829 4.0 43.5
18 Doktor Abelins gata 6 59.31596 18.05454 Södermalm Stockholm Stockholms län 1223 4875000 3092 NA 70.0
75 Sibeliusgången 34 59.41581 17.91272 Akalla Stockholm Stockholms län NA 1800000 4876 4.0 80.9
16 Standarvägen 1 59.27604 18.00459 Gamla Älvsjö Stockholm Stockholms län 6360 2950000 3983 1.0 91.0
32 Kungsbro Strand 17 59.33027 18.05143 Kungsholmen Stockholm Stockholms län 1086 1995000 2017 1.0 25.5
54 Pipersgatan 16 59.33057 18.04588 Kungsholmen Stockholm Stockholms län 1405 2195000 2105 3.0 27.0
22 Alva Myrdals gata 4 59.28650 17.95199 Fruängen-Hägersten Stockholm Stockholms län NA 1995000 2587 3.0 37.0
35 Norr Mälarstrand 24 59.32687 18.04522 Kungsholmen Stockholm Stockholms län 1437 2195000 910 4.0 23.0
4 Beckbrännarbacken 7 59.31487 18.08901 Södermalm Stockholm Stockholms län 329 1395000 520 0.5 11.0
> colnames(y.1)[1] <- "nothing"
> y.1
nothing.streetAddress nothing.position.latitude nothing.position.longitude nothing.namedAreas nothing.region.municipalityName nothing.region.countyName nothing.ocean listPrice rent floor livingArea
19 Västmannagatan 85C 59.34500 18.04370 Vasastan Stockholm Stockholms län 2325 4100000 1586 1.0 40.0
29 Redargatan 3 59.30279 18.09048 Hammarby Sjöstad Stockholm Stockholms län 1570 2800000 2829 4.0 43.5
18 Doktor Abelins gata 6 59.31596 18.05454 Södermalm Stockholm Stockholms län 1223 4875000 3092 NA 70.0
75 Sibeliusgången 34 59.41581 17.91272 Akalla Stockholm Stockholms län NA 1800000 4876 4.0 80.9
16 Standarvägen 1 59.27604 18.00459 Gamla Älvsjö Stockholm Stockholms län 6360 2950000 3983 1.0 91.0
32 Kungsbro Strand 17 59.33027 18.05143 Kungsholmen Stockholm Stockholms län 1086 1995000 2017 1.0 25.5
54 Pipersgatan 16 59.33057 18.04588 Kungsholmen Stockholm Stockholms län 1405 2195000 2105 3.0 27.0
22 Alva Myrdals gata 4 59.28650 17.95199 Fruängen-Hägersten Stockholm Stockholms län NA 1995000 2587 3.0 37.0
35 Norr Mälarstrand 24 59.32687 18.04522 Kungsholmen Stockholm Stockholms län 1437 2195000 910 4.0 23.0
4 Beckbrännarbacken 7 59.31487 18.08901 Södermalm Stockholm Stockholms län 329 1395000 520 0.5 11.0
> dput(y.1)
structure(list(Address = structure(list(address = structure(list(
streetAddress = c("Västmannagatan 85C", "Redargatan 3", "Doktor Abelins gata 6",
"Sibeliusgången 34", "Standarvägen 1", "Kungsbro Strand 17",
"Pipersgatan 16", "Alva Myrdals gata 4", "Norr Mälarstrand 24",
"Beckbrännarbacken 7")), .Names = "streetAddress", row.names = c(19L,
29L, 18L, 75L, 16L, 32L, 54L, 22L, 35L, 4L), class = "data.frame"),
position = structure(list(latitude = c(59.3449965, 59.3027897,
59.3159556, 59.4158109, 59.27603539, 59.33027358, 59.330567,
59.28649604, 59.326869, 59.314867), longitude = c(18.0437004,
18.0904824, 18.054536, 17.91271847, 18.00459327, 18.05143325,
18.045882, 17.95199275, 18.045217, 18.089009)), .Names = c("latitude",
"longitude"), row.names = c(19L, 29L, 18L, 75L, 16L, 32L,
54L, 22L, 35L, 4L), class = "data.frame"), namedAreas = list(
"Vasastan", "Hammarby Sjöstad", "Södermalm", "Akalla",
"Gamla Älvsjö", "Kungsholmen", "Kungsholmen", "Fruängen-Hägersten",
"Kungsholmen", "Södermalm"), region = structure(list(
municipalityName = c("Stockholm", "Stockholm", "Stockholm",
"Stockholm", "Stockholm", "Stockholm", "Stockholm", "Stockholm",
"Stockholm", "Stockholm"), countyName = c("Stockholms län",
"Stockholms län", "Stockholms län", "Stockholms län",
"Stockholms län", "Stockholms län", "Stockholms län",
"Stockholms län", "Stockholms län", "Stockholms län")), .Names = c("municipalityName",
"countyName"), row.names = c(19L, 29L, 18L, 75L, 16L, 32L,
54L, 22L, 35L, 4L), class = "data.frame"), distance = structure(list(
ocean = c(2325L, 1570L, 1223L, NA, 6360L, 1086L, 1405L,
NA, 1437L, 329L)), .Names = "ocean", row.names = c(19L,
29L, 18L, 75L, 16L, 32L, 54L, 22L, 35L, 4L), class = "data.frame")), .Names = c("address",
"position", "namedAreas", "region", "distance"), row.names = c(19L,
29L, 18L, 75L, 16L, 32L, 54L, 22L, 35L, 4L), class = "data.frame"),
nothing = c(4100000L, 2800000L, 4875000L, 1800000L, 2950000L,
1995000L, 2195000L, 1995000L, 2195000L, 1395000L), rent = c(1586L,
2829L, 3092L, 4876L, 3983L, 2017L, 2105L, 2587L, 910L, 520L
), floor = c(1, 4, NA, 4, 1, 1, 3, 3, 4, 0.5), livingArea = c(40,
43.5, 70, 80.9, 91, 25.5, 27, 37, 23, 11), source = structure(list(
name = c("BOSTHLM", "Fastighetsbyrån", "Gripsholms Fastighetsförmedling",
"Fastighetsbyrån", "Fastighetsbyrån", "Mäklarhuset",
"SkandiaMäklarna", "Svenska Mäklarhuset", "Svensk Fastighetsförmedling",
"Svensk Fastighetsförmedling"), id = c(1499L, 1573L,
9895524L, 1573L, 1573L, 204L, 1570L, 58L, 713L, 713L),
type = c("Broker", "Broker", "Broker", "Broker", "Broker",
"Broker", "Broker", "Broker", "Broker", "Broker"), url = c("http://www.bosthlm.se/",
"http://www.fastighetsbyran.se/", "http://gripsholms.se/",
"http://www.fastighetsbyran.se/", "http://www.fastighetsbyran.se/",
"http://www.maklarhuset.se/", "http://www.skandiamaklarna.se/",
"http://www.svenskamaklarhuset.se/", "http://www.svenskfast.se/",
"http://www.svenskfast.se/")), .Names = c("name", "id",
"type", "url"), row.names = c(19L, 29L, 18L, 75L, 16L, 32L,
54L, 22L, 35L, 4L), class = "data.frame"), rooms = c(2, 1.5,
2.5, 3, 3.5, 1, 1, 2, 1, 1), published = structure(c(16632,
16631, 16631, 16629, 16626, 16626, 16626, 16626, 16626, 16626
), class = "Date"), constructionYear = c(NA, 2008L, 1929L,
1977L, 1937L, 1934L, 1934L, NA, 1907L, 1929L), objectType = c("Lägenhet",
"Lägenhet", "Lägenhet", "Lägenhet", "Lägenhet", "Lägenhet",
"Lägenhet", "Lägenhet", "Lägenhet", "Lägenhet"), booliId = c(1919949L,
1893141L, 1896584L, 1898347L, 1917520L, 1918305L, 1918270L,
1918145L, 1918063L, 1918049L), soldDate = structure(c(16635,
16633, 16636, 16630, 16636, 16632, 16632, 16635, 16632, 16636
), class = "Date"), soldPrice = c(4100000L, 2950000L, 5175000L,
1800000L, 4200000L, 2510000L, 2610000L, 2500000L, 2950000L,
1850000L), url = c("https://www.booli.se/bostad/lagenhet/vasastan/vastmannagatan+85c/1919949",
"https://www.booli.se/bostad/lagenhet/hammarby+sjostad/redargatan+3/1893141",
"https://www.booli.se/bostad/lagenhet/sodermalm/doktor+abelins+gata+6/1896584",
"https://www.booli.se/bostad/lagenhet/akalla/sibeliusgangen+34/1898347",
"https://www.booli.se/bostad/lagenhet/gamla+alvsjo/standarvagen+1/1917520",
"https://www.booli.se/bostad/lagenhet/kungsholmen/kungsbro+strand+17/1918305",
"https://www.booli.se/bostad/lagenhet/kungsholmen/pipersgatan+16/1918270",
"https://www.booli.se/bostad/lagenhet/fruangen-hagersten/alva+myrdals+gata+4/1918145",
"https://www.booli.se/bostad/lagenhet/kungsholmen/norr+malarstrand+24/1918063",
"https://www.booli.se/bostad/lagenhet/sodermalm/beckbrannarbacken+7/1918049"
), isNewConstruction = c(NA_integer_, NA_integer_, NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_,
NA_integer_, NA_integer_), plotArea = c(NA, NA, NA, NA, NA,
0L, NA, 0L, NA, NA), additionalArea = c(NA_integer_, NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_,
NA_integer_, NA_integer_, NA_integer_), AreaSize = structure(c(4L,
4L, 7L, 8L, 9L, 2L, 2L, 3L, 2L, 1L), .Label = c("10", "20",
"30", "40", "50", "60", "70", "80", "90", "100", "110", "120",
"130"), class = "factor"), PriceDiff = c(0L, 150000L, 300000L,
0L, 1250000L, 515000L, 415000L, 505000L, 755000L, 455000L
)), .Names = c("Address", "nothing", "rent", "floor", "livingArea",
"source", "rooms", "published", "constructionYear", "objectType",
"booliId", "soldDate", "soldPrice", "url", "isNewConstruction",
"plotArea", "additionalArea", "AreaSize", "PriceDiff"), row.names = c(19L,
29L, 18L, 75L, 16L, 32L, 54L, 22L, 35L, 4L), class = "data.frame")
所以它不是一個data.frame,HTTP://計算器.com/questions/31533936/knitr-error-in-usemethodround-any-no-applicable-method-for-round-any-appl – zx8754
用'dput(y)'更新你的帖子,所以我們可以重現完全相同的數據集。 – zx8754
好吧。寫作課(y.1)會生成一個data.frame響應。我已根據您的要求更新了dput(y)輸出的帖子。 – uncool