我下載了適用於Linux OS的SVM-Light。運行命令。它生成2個可執行文件svm_learn和svm_classify。使用此我試圖execte一個例子文件(它包含train.dat
,test.dat
文件)與下面的代碼爲什麼在svmlight中培訓和測試文件相同
./svm_learn example1/train.dat example1/model.txt
./svm_classify example1/test.dat example1/model.txt example1/predictions.txt
之後,我得到2文本文件模型和預測。我是svm的新手。 爲什麼test.dat
和train.dat
在示例文件中的格式相同?
test.dat +1 6:0.0342598670723747 26:0.148286149621374 27:0.0570037235976456
train.dat 1 6:0.0198403253586671 15:0.0339873732306071 29:0.0360280968798065
像
> Scanning examples...done
Reading examples into memory...100..200..300..400..500..600..700..800..900..1000..1100..1200..1300..1400..1500..1600..1700..1800..1900..2000..OK. (2000 examples read)
Setting default regularization parameter C=1.0000
Optimizing........................................................................................................................................................................................................................................................................................................................................................................................................................................done. (425 iterations)
Optimization finished (5 misclassified, maxdiff=0.00085).
Runtime in cpu-seconds: 0.07
Number of SV: 878 (including 117 at upper bound)
L1 loss: loss=35.67674
Norm of weight vector: |w|=19.55576
Norm of longest example vector: |x|=1.00000
Estimated VCdim of classifier: VCdim<=383.42790
Computing XiAlpha-estimates...done
Runtime for XiAlpha-estimates in cpu-seconds: 0.00
XiAlpha-estimate of the error: error<=5.85% (rho=1.00,depth=0)
XiAlpha-estimate of the recall: recall=>95.40% (rho=1.00,depth=0)
XiAlpha-estimate of the precision: precision=>93.07% (rho=1.00,depth=0)
Number of kernel evaluations: 45954
Writing model file...done
train.dat
輸出培訓文件,以便它執行前標記,那麼爲什麼test.dat
在執行前標記?可以解釋輸出尤其是條款precision,recall,error