0
在下面的代碼中,我介紹了一個卷積和一個最大池層。共用層的輸出形狀爲(4,6,6,1)。現在我想定義第二個卷積層。第二個卷積層的輸入是什麼?我可以調用相同的conv2d函數嗎?但是這裏的輸入通道是不同的。第二卷積層的輸入尺寸?
batch_size = 4
image_height = 12
image_width =12
input_channel = 2
output_channel =1
input = tf.Variable(tf.random_normal([batch_size,image_height,image_width,input_channel]))
filter = tf.Variable(tf.random_normal([2,2,input_channel,output_channel]))
def conv2d(inputs,filters):
return tf.nn.conv2d(inputs,filters,strides=[1,1,1,1],padding='SAME')
def max_pool(conv_out):
return tf.nn.max_pool(conv_out,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
conv_out1 = conv2d(input,filter)
pooling_out1= max_pool(conv_out1)
sess =tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
print conv_out1.get_shape()
print pooling_out1.get_shape()