2014-12-21 71 views
0

我尋求的變種之間的區別你的洞察力和在Stata迴歸的命令。給定相同的變量和相同數量的滯後,是什麼使這些模型不同(根據其輸出的差異來判斷)?時間序列在Stata:VAR與迴歸

var y x1 x2, lags(1/7) 

regress L(1/7).y L(1/7).x1 L(1/7).x2 

該系列事先被轉換成靜止的。

var y x1 x2, lags(1/7) 

Vector autoregression 

Sample: 9 - 159         No. of obs  =  151 
Log likelihood = -2461.622       AIC    = 33.47844 
FPE   = 7.00e+10       HQIC   = 34.01421 
Det(Sigma_ml) = 2.90e+10       SBIC   = 34.79725 

Equation   Parms  RMSE  R-sq  chi2  P>chi2 
--------------------------------------------------------------- 
     y   22  627.086 0.4632 130.3037 0.0000 
     x1   22  16.4642 0.4150 107.1156 0.0000 
     x2   22  34.8932 0.3821 93.37647 0.0000 
---------------------------------------------------------------- 

--------------------------------------------------------------------------------- 
       |  Coef. Std. Err.  z P>|z|  [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
      y | 
       y | 
      L1. | -.8034219 .0870606 -9.23 0.000 -.9740576 -.6327862 
      L2. | -.829339 .1112633 -7.45 0.000 -1.047411 -.611267 
      L3. | -.6881525 .1268751 -5.42 0.000 -.9368231 -.4394818 
      L4. | -.5958702 .1316349 -4.53 0.000 -.8538699 -.3378706 
      L5. | -.4941909 .1285658 -3.84 0.000 -.7461752 -.2422066 
      L6. | -.3478784 .1130961 -3.08 0.002 -.5695426 -.1262142 
      L7. | -.1273106 .0892459 -1.43 0.154 -.3022294 .0476083 
       | 
       x1 | 
      L1. | 2.814694 4.697886  0.60 0.549 -6.392995 12.02238 
      L2. | 13.40258 5.712821  2.35 0.019  2.205654  24.5995 
      L3. | 13.41822 6.119334  2.19 0.028  1.424542 25.41189 
      L4. | 7.634082 6.373183  1.20 0.231 -4.857128 20.12529 
      L5. | 2.001271 5.898859  0.34 0.734  -9.56028 13.56282 
      L6. | 3.421364 5.569404  0.61 0.539 -7.494468  14.3372 
      L7. | 4.068799 4.46953  0.91 0.363 -4.691319 12.82892 
       | 
       x2 | 
      L1. | -.5105249 2.210646 -0.23 0.817 -4.843312 3.822262 
      L2. | -2.108354 2.495037 -0.85 0.398 -6.998537  2.78183 
      L3. | -1.442043 2.592775 -0.56 0.578 -6.523789 3.639704 
      L4. | -.9065004 2.620667 -0.35 0.729 -6.042914 4.229913 
      L5. | -.0001391 2.53355 -0.00 1.000 -4.965806 4.965528 
      L6. | 2.146481 2.427015  0.88 0.376 -2.610381 6.903343 
      L7. | -1.118613 2.118762 -0.53 0.598 -5.271309 3.034084 
       | 
      _cons | 22.43668 48.04635  0.47 0.641 -71.73243 116.6058 
----------------+---------------------------------------------------------------- 
     x1  | 
       y | 
      L1. | .0036968 .0022858  1.62 0.106 -.0007833 .0081768 
      L2. | .0012158 .0029212  0.42 0.677 -.0045097 .0069413 
      L3. | .0035081 .0033311  1.05 0.292 -.0030208  .010037 
      L4. | .0032596 .0034561  0.94 0.346 -.0035142 .0100334 
      L5. | .0005852 .0033755  0.17 0.862 -.0060307  .007201 
      L6. | -.0018743 .0029693 -0.63 0.528 -.0076941 .0039455 
      L7. | -.0040389 .0023432 -1.72 0.085 -.0086314 .0005537 
       | 
       x1 | 
      L1. | -.5753736 .1233434 -4.66 0.000 -.8171223 -.3336249 
      L2. | -.3020477 .1499906 -2.01 0.044 -.5960239 -.0080714 
      L3. | -.3313213 .1606637 -2.06 0.039 -.6462164 -.0164263 
      L4. | -.1718872 .1673285 -1.03 0.304 -.4998451 .1560707 
      L5. | -.1834757 .1548751 -1.18 0.236 -.4870253 .1200739 
      L6. | .0489376 .1462252  0.33 0.738 -.2376586 .3355337 
      L7. | .1766427 .1173479  1.51 0.132  -.053355 .4066404 
       | 
       x2 | 
      L1. | -.1051509 .0580407 -1.81 0.070 -.2189086 .0086069 
      L2. | -.1006968 .0655074 -1.54 0.124  -.229089 .0276954 
      L3. | -.0906552 .0680736 -1.33 0.183 -.2240769 .0427665 
      L4. | -.1436015 .0688059 -2.09 0.037 -.2784585 -.0087445 
      L5. | -.0930764 .0665186 -1.40 0.162 -.2234505 .0372976 
      L6. | -.1018913 .0637215 -1.60 0.110 -.2267832 .0230006 
      L7. | -.1194924 .0556283 -2.15 0.032 -.2285218 -.0104629 
       | 
      _cons | 1.918878 1.261461  1.52 0.128  -.553541 4.391296 
----------------+---------------------------------------------------------------- 
       x2 | 
       y | 
      L1. | .0010281 .0048444  0.21 0.832 -.0084667 .0105228 
      L2. | -.0038838 .0061911 -0.63 0.530 -.0160181 .0082505 
      L3. | .0035605 .0070598  0.50 0.614 -.0102764 .0173974 
      L4. | .0041767 .0073246  0.57 0.569 -.0101793 .0185327 
      L5. | .0007593 .0071538  0.11 0.915  -.013262 .0147806 
      L6. | -.0027897 .0062931 -0.44 0.658 -.0151239 .0095445 
      L7. | .0018272 .004966  0.37 0.713 -.0079059 .0115603 
       | 
       x1 | 
      L1. | .3332696 .2614066  1.27 0.202  -.179078 .8456172 
      L2. | .6160613 .3178811  1.94 0.053 -.0069742 1.239097 
      L3. | .4139762 .3405009  1.22 0.224 -.2533934 1.081346 
      L4. | .2837896 .3546259  0.80 0.424 -.4112645 .9788436 
      L5. | .4448436 .3282329  1.36 0.175 -.1984811 1.088168 
      L6. | .6417029 .3099009  2.07 0.038  .0343084 1.249098 
      L7. | .4719593 .2487001  1.90 0.058 -.0154839 .9594025 
       | 
       x2 | 
      L1. | -.7465681 .123008 -6.07 0.000 -.9876594 -.5054769 
      L2. | -.6760273 .1388325 -4.87 0.000  -.948134 -.4039206 
      L3. | -.4367948 .144271 -3.03 0.002 -.7195607 -.1540289 
      L4. | -.4889316 .145823 -3.35 0.001 -.7747393 -.2031238 
      L5. | -.5310379 .1409755 -3.77 0.000 -.8073447 -.254731 
      L6. | -.4416263 .1350475 -3.27 0.001 -.7063146 -.1769381 
      L7. | -.3265204 .1178952 -2.77 0.006 -.5575907  -.09545 
       | 
      _cons | 3.568261 2.673465  1.33 0.182 -1.671634 8.808155 
--------------------------------------------------------------------------------- 



regress L(1/7).y L(1/7).x1 L(1/7).x2 

      Source |  SS  df  MS    Number of obs =  151 
    -------------+------------------------------   F(20, 130) = 7.23 
      Model | 49291082.3 20 2464554.11   Prob > F  = 0.0000 
     Residual | 44322342.8 130 340941.099   R-squared  = 0.5265 
    -------------+------------------------------   Adj R-squared = 0.4537 
      Total | 93613425.1 150 624089.501   Root MSE  = 583.9 

    --------------------------------------------------------------------------------- 
      L.y |  Coef. Std. Err.  t P>|t|  [95% Conf. Interval] 
    ----------------+---------------------------------------------------------------- 
       y | 
      L2. | -.8074369 .0868829 -9.29 0.000 -.9793244 -.6355494 
      L3. | -.7857941 .1076428 -7.30 0.000 -.9987525 -.5728357 
      L4. | -.6747462 .1186733 -5.69 0.000 -.9095271 -.4399654 
      L5. | -.5758927 .1192639 -4.83 0.000  -.811842 -.3399433 
      L6. | -.4199846 .1078154 -3.90 0.000 -.6332845 -.2066846 
      L7. | -.2444889 .0873128 -2.80 0.006 -.4172267 -.071751 
       | 
       x1 | 
      L1. | 9.174249 4.663798  1.97 0.051 -.0525176 18.40102 
      L2. | 6.026435 5.730833  1.05 0.295 -5.311334  17.3642 
      L3. | 13.03098 6.057813  2.15 0.033  1.046324 25.01564 
      L4. | 13.01178 6.318175  2.06 0.041  .5120225 25.51153 
      L5. | 6.146548 5.91807  1.04 0.301 -5.561646 17.85474 
      L6. | .8687361 5.610159  0.15 0.877 -10.23029 11.96776 
      L7. | -.6015264 4.502342 -0.13 0.894 -9.508873  8.30582 
       | 
       x2 | 
      L1. | 2.709283 2.214315  1.22 0.223 -1.671474 7.090041 
      L2. | 2.947753 2.500195  1.18 0.241 -1.998585  7.89409 
      L3. | .7449778 2.611172  0.29 0.776 -4.420914 5.910869 
      L4. | .8159876 2.639117  0.31 0.758 -4.405191 6.037166 
      L5. | 1.839693 2.54722  0.72 0.471 -3.199677 6.879062 
      L6. | 2.267241 2.436901  0.93 0.354 -2.553876 7.088358 
      L7. | 4.198018 2.102467  2.00 0.048  .0385389 8.357497 
       | 
      _cons | -3.078699 48.40164 -0.06 0.949 -98.83556 92.67816 
--------------------------------------------------------------------------------- 

回答

0

對我來說他們有兩個不同的規格。

第一個(VAR)被估計三個獨立變量與因變量(Y,X1,X2)一個在時間的滯後的影響。第二個是從2估計時滯的影響:由式(1:7)7 Y的+滯後X1的+滯後從:對因變量L(Y)×2(1 7)。所以他們在y方有兩個不同的因變量和自變量。請參閱下面的等式(前三個是var代碼,最後一個是regress代碼):

enter image description here

的OLS規範並沒有考慮到模型中的變量之間存在反饋效應。雖然你可能感興趣的發言權X1的Y上的效果,但也X1是由y影響及其滯後值 - 反饋效果。因此,使用OLS將導致虛假迴歸。