2010-08-01 71 views
3

Vincent通過暗示該功能回答了Fast Arc Cos algorithm棘手的算術或手術嗎?

float arccos(float x) 
{ 
    x = 1 - (x + 1); 
    return pi * x/2; 
} 

的問題是,爲什麼x = 1 - (x + 1)而不是x = -x

+0

**注意:**顯然這裏提供的解決方案並不完全正確,但問題仍然存在。 – 2010-08-01 05:36:16

回答

3

只有當(x + 1)導致精度損失時,它纔會返回不同的結果,也就是說x的數量級大於或小於一個數量級。

但我不認爲這是棘手巧妙的手法的,我認爲這只是普通錯誤

cos(0) = 1 but f(1) = -pi/2 
cos(pi/2) = 0 but f(0) = 0 
cos(pi) = -1 but f(-1) = pi/2 

其中f(x)是文森特的arccos實現。他們都是關閉的pi/2,線性近似是得到至少這三點正確的是

g(x) = (1 - x) * pi/2 
+0

我仍然不知道精密零件的損失,請您舉個例子嗎? – 2010-08-01 05:48:22

+0

@David,試試'1.0 - (1.0 + 1e-16)'vs' - (1e-16)' – Anycorn 2010-08-01 05:56:52

+0

看一看[acos]的圖形(http://www.mathworks.com/access/helpdesk /help/techdoc/ref/acos.gif) - 一個更好的線性近似(基於x = 0處的切線)將是'g(x)= pi/2 - x',除非x接近-1或1 – 2010-08-02 20:38:40

0

我看不到的細節瞬間,但想想爲x發生了什麼接近1或-1從任何一方,並考慮舍入誤差。

0

加法導致兩個數字都歸一化(在這種情況下,與x有關)。 IIRC,在Knuth的第2卷的關於浮點運算的章節中,您甚至可以看到像x + 0這樣的表達式。