我正在嘗試編寫一個代碼來構建由協整對投資組合(股票價格是協整)組成的dataFrame。在這種情況下,投資組合中的股票從S & P500中選擇,它們具有相同的權重。提高Python for循環的性能?
此外,對於一些經濟問題,投資組合必須包括相同的部門。
例如: 如果一個投資組合中的股票來自[IT]和[金融]部門,第二個投資組合必須從[IT]和[金融]部門中選擇股票。
投資組合中沒有正確的股票數量,所以我正在考慮每個股票10到20個股票。但是,當考慮組合時,這是(500選擇10),所以我有一個計算時間的問題。
以下是我的代碼:
def adf(x, y, xName, yName, pvalue=0.01, beta_lower=0.5, beta_upper=1):
res=pd.DataFrame()
regress1, regress2 = pd.ols(x=x, y=y), pd.ols(x=y, y=x)
error1, error2 = regress1.resid, regress2.resid
test1, test2 = ts.adfuller(error1, 1), ts.adfuller(error2, 1)
if test1[1] < pvalue and test1[1] < test2[1] and\
regress1.beta["x"] > beta_lower and regress1.beta["x"] < beta_upper:
res[(tuple(xName), tuple(yName))] = pd.Series([regress1.beta["x"], test1[1]])
res = res.T
res.columns=["beta","pvalue"]
return res
elif test2[1] < pvalue and regress2.beta["x"] > beta_lower and\
regress2.beta["x"] < beta_upper:
res[(tuple(yName), tuple(xName))] = pd.Series([regress2.beta["x"], test2[1]])
res = res.T
res.columns=["beta","pvalue"]
return res
else:
pass
def coint(dataFrame, nstocks = 2, pvalue=0.01, beta_lower=0.5, beta_upper=1):
# dataFrame = pandas_dataFrame, in this case, data['Adj Close'], row=time, col = tickers
# pvalue = level of significance of adf test
# nstocks = number of stocks considered for adf test (equal weight)
# if nstocks > 2, coint return cointegration between portfolios
# beta_lower = lower bound for slope of linear regression
# beta_upper = upper bound for slope of linear regression
a=time.time()
tickers = dataFrame.columns
tcomb = itertools.combinations(dataFrame.columns, nstocks)
res = pd.DataFrame()
sec = pd.DataFrame()
for pair in tcomb:
xName, yName = list(pair[:int(nstocks/2)]), list(pair[int(nstocks/2):])
xind, yind = tickers.searchsorted(xName), tickers.searchsorted(yName)
xSector = list(SNP.ix[xind]["Sector"])
ySector = list(SNP.ix[yind]["Sector"])
if set(xSector) == set(ySector):
sector = [[(xSector, ySector)]]
x, y = dataFrame[list(xName)].sum(axis=1), dataFrame[list(yName)].sum(axis=1)
res1 = adf(x,y,xName,yName)
if res1 is None:
continue
elif res.size==0:
res=res1
sec = pd.DataFrame(sector, index = res.index, columns = ["sector"])
print("added : ", pair)
else:
res=res.append(res1)
sec = sec.append(pd.DataFrame(sector, index = [res.index[-1]], columns = ["sector"]))
print("added : ", pair)
res = pd.concat([res,sec],axis=1)
res=res.sort_values(by=["pvalue"],ascending=True)
b=time.time()
print("time taken : ", b-a, "sec")
return res
當nstocks = 2時,這大約需要263秒,但作爲nstocks增加,環路採用了大量的時間(超過一天)
我收集使用pandas_datareader.data 從雅虎財務「調關閉」數據和索引是時間和列是不同的代號
任何建議或幫助將受到讚賞