0
我的任務是編寫一個計算方法的收斂速度的程序。我不得不用牛頓方法來逼近根。代碼的這一部分是可以的,並且運行良好,但是我會把它寫出來。使用牛頓法計算代碼的收斂率
x0 : start value
F: function
DF: jacobi matrix
tol : tolerance rate of the approximation. If it is reached the loop shall be stopped --> that`s why I calculate with count
maxit: maximum iterations
重要的是,我試圖做任何n維。
def konv(x0, F, FD, tol, maxit):
#set counter of the iterations to zero and define an array for the values of x in the iteration
count = 0
x = np.zeros([np.shape(x0)[0], maxit])
x[:,0] = x0
#fill the array with the values given by the formula x_k+1 = x_k - ((DF(x_k))^(-1)*F(x_k))
#((DF(x_k))^(-1)*F(x_k)) = s
for i in range(maxit):
count = 1+i
s = np.linalg.solve(DF(x[..., i]), F(x[..., i]))
x[..., i+1] = x[..., i] - s
if np.all((np.linalg.norm(x[..., i+1]-x[..., i]) < tol*np.linalg.norm(x[..., i]))):
break
#define an array which stores the errors
e = np.zeros(count)
for i in range(count):
e[i] = np.linalg.norm(x[..., i] - x[..., count])
#return the rate of convergence
return lambda e : np.log(e[2:]/e[1:-1]/np.log(e[1:-1])/e[:-2])
主要部分:
if __name__ == "__main__":
p = konv(x0, F, DF, tol, maxit)
print(p)
我得到的結果是:
[ 0.39384945 0.03214274] 6
<function konv.<locals>.<lambda> at 0x0000023312A82268>
這是什麼意思?它不應該返回一個數字嗎?爲什麼我的返回值中有字母?