0
例如,我們有64 * 100的輸入數據將被髮送到張量流圖中,並且它將在輸入softmax或任何損失之前生成64 *(n_hidden節點)輸出功能。我們把1 * 100放在同一個圖中,結果應該是前一個輸出的第一行,但結果不是。我使用Mnist上的張量流量實例來測試比較。相同的批次但不同的批量生成不同的結果
'''
A Multilayer Perceptron implementation example using TensorFlow library.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
from __future__ import print_function
import numpy as np
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name ='layer1'),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name = 'layer2'),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name = 'layer3')
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1]), name = 'layer1_b'),
'b2': tf.Variable(tf.random_normal([n_hidden_2]), name = 'layer2_b'),
'out': tf.Variable(tf.random_normal([n_classes]), name = 'layer3_b')
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
#optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
var = tf.all_variables()
trainer = tf.train.AdamOptimizer(learning_rate=learning_rate)
grads = trainer.compute_gradients(cost, var)
update = trainer.apply_gradients(grads)
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
#_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
#c, v,grad, Pred, bi = sess.run([cost, var,grads, pred, biases], feed_dict={x: batch_x, y: batch_y})
Pred_2 = sess.run(pred, feed_dict={x: batch_x, y: batch_y})
Pred_1 = sess.run(pred , feed_dict={x: batch_x[0:1,:], y: batch_y[0:1]})
print(Pred_2[0] == Pred_1)
# Compute average loss
avg_cost += c/total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
# print(len(v))
# g1 = np.array(grad[0])
# g2 = np.array(grad[1])
# g3 = np.array(grad[2])
# g4 = np.array(grad[3])
# g5 = np.array(grad[4])
# g6 = np.array(grad[5])
# print(g1.shape)
# print(g2.shape)
# print(g3.shape)
# print(g4.shape)
# print(g5.shape)
# print(g6.shape)
# print(g6[0,:])
# print(g6[1,:])
# print(bi['out'])
#print(type(updating))
print("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
print(Pred_2 [0] == Pred_1)應該是相同的,但它們不是。它很奇怪。
'np.allclose(Pred_2 [0:1],Pred_1)' – Kh40tiK
您確定這不是數據結構不等式嗎?我期望Pred_1和Pred_2具有相同的維度數量,但如果您將索引而不是其他索引,那麼這是一個問題。也許嘗試np.all(np.asarray(Pred_1).ravel()== np.asarray(Pred_2 [0])。ravel()) –
是的,實際上它應該是相同的,我打印出來,它原來他們是一樣的。但是,當我想輸出false或true時,它總是給出False,我用了兩種方法。 – Tong