你可以用 「recall_macro」 中這樣說:
results = model_selection.cross_val_score(estimator, X, Y, cv= kfold, scoring= 'recall_macro')
按照documentation of metrics
‘f1’ metrics.f1_score for binary targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted average
‘f1_samples’ metrics.f1_score by multilabel sample
‘neg_log_loss’ metrics.log_loss requires predict_proba support
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’
正如你所看到的,其規定的所有後綴申請「召回」。
另外,您也可以使用make_scorer
這樣的:
# average can take values from 'macro', 'micro', 'weighted' etc as specified above
scorer = make_scorer(recall_score, pos_label=None, average='macro')
results = model_selection.cross_val_score(estimator, X, Y, cv= kfold,
scoring= scorer)