0
我對分類準確性的理解始終是「#正確分類的實例除以#物質」。 使用Java-ML並將LibSVM應用於多標籤問題我爲每個CLASS獲得準確度(和其他度量)。我無法弄清楚它們是如何相關的以及整體準確度如何。對多類分類的Java-ML結果的解釋
例如,對於我的3類問題,我得到的結果如下:
Anger: Accuracy = 0.48148148148148145 | F = 0.35 | Precision = 0.310126582278481 | Error rate = 0.5185185185185185
Neutral: Accuracy = 0.9971509971509972 | F = 0.0 | Precision = NaN | Error rate = 0.002849002849002849
Surprise: Accuracy = 0.47863247863247865 | F = 0.5653206650831354 | Precision = 0.616580310880829 | Error rate = 0.5213675213675214
我的哪些代碼如下所示:
Map<Object, PerformanceMeasure> pm = cv.crossValidation(data, 5);
for (Object o : pm.keySet()) {
System.out.println(o + ": Accuracy = " + pm.get(o).getAccuracy()
+ " | F = " + pm.get(o).getFMeasure()
+ " | Precision = " + pm.get(o).getPrecision()
+ " | Error rate = " + pm.get(o).getErrorRate());
}