我試圖解決使用像BFS搜索,DFS,貪婪和A *使用曼哈頓距離作爲我的啓發式解決方案的技術八謎。8重複節點的瓷磚解決方案 - Python
問題是,雖然我可以解決一些很多問題,但問題出在一些謎題,可能會發生的問題是,我在展開父節點時遇到的子節點可能已經存在於較舊的節點中。
我不知道我是否能夠很好地解釋我自己,但我的主要問題是我試圖查看我創建的新節點是否已經不在舊節點上。
有了這個問題,我通常會深入9,然後我的程序不會提前或給出解決方案。
我的一個ideias的是使用代碼:
if node in prev:
continue
prev.append(node)
但我想我走錯了路。
我在python上這樣做,這是我的代碼,以防有人可以幫助我。
#!/usr/bin/python
import sys
import copy
class Board:
def __init__(self, matrix, whitepos=None):
self.matrix = matrix
self.whitepos = whitepos
if not whitepos:
for y in xrange(3):
for x in xrange(3):
if board[y][x] == 0:
self.whitepos = (x, y)
def is_final_state(board):
final = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
for y in xrange(3):
for x in xrange(3):
if board.matrix[y][x] != final[y][x]:
return False
return True
def get_whitepos(board):
return board.whitepos
def move(board, x, y, dx, dy):
b = copy.deepcopy(board.matrix)
b[y][x] = b[y + dy][x + dx]
b[y + dy][x + dx] = 0
return Board(b, (x + dx, y + dy))
def manhattan_heur(board):
finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
(0, 1)]
cost = 0
for y in xrange(3):
for x in xrange(3):
t = board.matrix[y][x]
xf, yf = finalpos[t]
cost += abs(xf - x) + abs(yf - y)
return cost
def wrongplace_heur(board):
finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
(0, 1)]
cost = 0
for y in xrange(3):
for x in xrange(3):
t = board.matrix[y][x]
if finalpos[t] != (x, y):
cost += 1
return cost
def heuristic(board):
return manhattan_heur(board)
class Node:
def __init__(self, board, parent):
self.state = board
self.parent = parent
if not parent:
self.g = 0
else:
self.g = parent.g + 1
self.h = heuristic(board)
def test_goal(self):
return is_final_state(self.state)
def expand(self):
children = []
b = self.state
x, y = get_whitepos(b)
if x > 0:
children.append(Node(move(b, x, y, -1, 0), self))
if x < 2:
children.append(Node(move(b, x, y, +1, 0), self))
if y > 0:
children.append(Node(move(b, x, y, 0, -1), self))
if y < 2:
children.append(Node(move(b, x, y, 0, +1), self))
return children
class Solution:
def __init__(self, node, mem_needed, steps):
self.node = node
self.mem_needed = mem_needed
self.iterations = steps
def inc(self, other):
self.node = other.node
self.mem_needed = max(self.mem_needed, other.mem_needed)
self.iterations += other.iterations
def search(board, queue_fn, queue_arg=None):
max_nodes = 1
steps = 0
nodes = [Node(Board(board), None)]
prev = []
depth = 0
while nodes:
node = nodes.pop(0)
if node.g > depth:
depth = node.g
print depth
if node in prev:
continue
prev.append(node)
if node.test_goal():
return Solution(node, max_nodes, steps)
new_nodes = node.expand()
nodes = queue_fn(nodes, new_nodes, queue_arg)
max_nodes = max(max_nodes, len(nodes))
steps += 1
return Solution(None, max_nodes, steps)
def fifo_queue(nodes, new_nodes, _):
nodes.extend(new_nodes)
return nodes
def bl_search(board):
return search(board, fifo_queue)
def lifo_queue(nodes, new_nodes, _):
new_nodes.extend(nodes)
return new_nodes
def dfs_search(board):
return search(board, lifo_queue)
def bpl_queue(nodes, new_nodes, max_depth):
def f(n):
return n.g <= max_depth
new_nodes = filter(f, new_nodes)
new_nodes.extend(nodes)
return new_nodes
def bpi_search(board):
solution = Solution(None, 0, 0)
for max_depth in xrange(0, sys.maxint):
sol = search(board, bpl_queue, max_depth)
solution.inc(sol)
if solution.node:
return solution
def sort_queue(nodes, new_nodes, cmp):
nodes.extend(new_nodes)
nodes.sort(cmp)
return nodes
def guloso2_search(board):
def cmp(n1, n2):
return n1.h - n2.h
return search(board, sort_queue, cmp)
def astar_search(board):
def cmp(n1, n2):
return (n1.g + n1.h) - (n2.g + n2.h)
return search(board, sort_queue, cmp)
def print_solution(search, sol):
print
print "*", search
node = sol.node
if node:
print "moves:", node.g
while node:
print "\t", node.state.matrix
node = node.parent
else:
print "no solution found"
print "nodes needed:", sol.mem_needed
print "iterations: ", sol.iterations
board = [[6, 5, 7], [2, 0, 1], [8, 4, 3]]
print_solution("bl", bl_search(board))
print_solution("dfs", dfs_search(board))
print_solution("bpi", bpi_search(board))
print_solution("guloso2", guloso2_search(board))
print_solution("astar", astar_search(board))
對於Python編程,八個空格有點不規律。如果您切換到四個空格,人們可能會發現閱讀起來更容易(並且更可能回答)。 – 2013-03-06 17:05:50
我有問題發佈代碼,因爲這是我第一次在這裏發佈代碼,這就是爲什麼它帶有8個空格 – 2013-03-06 17:10:36
爲你重新格式化,並替換了一些奇怪的'如果x == None:'和'如果x!= None :'帶'如果不是x:'和'if x:'。 – maksimov 2013-03-06 17:11:53