2016-12-12 192 views
1

首先,我是PCL的新手,我正在尋找使用檢測器和描述符進行點雲配準的特徵匹配主題的幫助。PCL特徵匹配

我管線工程如下:

  1. 負載源雲
  2. 檢測ISS關鍵點
  3. 使用FPFH
  4. 負載目標雲
  5. 檢測ISS關鍵點
  6. 使用說明關鍵點描述關鍵點FPFH
  7. 估計值對應分配辦法
  8. 對應濾波
  9. 變換估計 最後 - >使用估計的變換矩陣將來自步驟9

變換源雲問題是:

  1. 代碼需要太多的時間在法線計算
  2. 結果非常糟糕,如圖片所示 Results

代碼是:提前

#include <iostream> 
    #include <vector> 

    // PCL 
    #include <pcl/io/pcd_io.h> 
    #include <pcl/point_types.h> 
    #include <pcl/keypoints/iss_3d.h> 
    #include <pcl/features/normal_3d.h> 
    #include <pcl/features/shot.h> 
    #include <pcl/filters/extract_indices.h> 
    #include <pcl/registration/correspondence_estimation.h> 
    #include <pcl/registration/correspondence_rejection_one_to_one.h> 
    #include <pcl/registration/correspondence_rejection_sample_consensus.h> 
    #include <pcl/registration/transformation_estimation_svd.h> 
    #include <pcl/visualization/cloud_viewer.h> 
    #include <pcl/registration/icp.h> 
    #include <pcl/features/fpfh.h> 


    using namespace pcl; 
    using namespace pcl::io; 

    pcl::visualization::PCLVisualizer viewer("Cloud Viewer"); 
    pcl::visualization::PCLVisualizer ICPView("ICP Viewer"); 

    double computeCloudResolution(const pcl::PointCloud<PointXYZ>::ConstPtr &cloud) 
    { 
     double res = 0.0; 
     int n_points = 0; 
     int nres; 
     std::vector<int> indices(2); 
     std::vector<float> sqr_distances(2); 
     pcl::search::KdTree<PointXYZ> tree; 
     tree.setInputCloud(cloud); 

     for (size_t i = 0; i < cloud->size(); ++i) 
     { 
      if (!pcl_isfinite((*cloud)[i].x)) 
      { 
       continue; 
      } 
     //Considering the second neighbor since the first is the point itself. 
     nres = tree.nearestKSearch(i, 2, indices, sqr_distances); 
     if (nres == 2) 
     { 
      res += sqrt(sqr_distances[1]); 
      ++n_points; 
     } 
    } 
    if (n_points != 0) 
    { 
     res /= n_points; 
    } 
    return res; 
} 


int main(int, char** argv) 
{ 
    pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud(new PointCloud<PointXYZ>()); 
    loadPCDFile("cloudASCII000.pcd", *source_cloud); 
    std::cout << "File 1 points: " << source_cloud->points.size() << std::endl; 
    //file 1 

     // Compute model_resolution 

    double model_resolution = computeCloudResolution(source_cloud); 

    pcl::ISSKeypoint3D<pcl::PointXYZ, pcl::PointXYZ> iss_detector; 
    pcl::PointCloud<pcl::PointXYZ>::Ptr source_keypoints(new pcl::PointCloud<pcl::PointXYZ>()); 
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>()); 

    iss_detector.setSearchMethod(tree); 
    iss_detector.setSalientRadius(10 * model_resolution); 
    iss_detector.setNonMaxRadius(8 * model_resolution); 
    iss_detector.setThreshold21(0.2); 
    iss_detector.setThreshold32(0.2); 
    iss_detector.setMinNeighbors(10); 
    iss_detector.setNumberOfThreads(10); 
    iss_detector.setInputCloud(source_cloud); 
    iss_detector.compute((*source_keypoints)); 
    pcl::PointIndicesConstPtr keypoints_indices = iss_detector.getKeypointsIndices(); 


    std::cout << "No of ISS points in the result are " << (*source_keypoints).points.size() << std::endl; 
    std::string Name = "ISSKeypoints1.pcd"; 
    savePCDFileASCII(Name, (*source_keypoints)); 


    // Compute the normals 
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation; 
    normalEstimation.setInputCloud(source_cloud); 
    normalEstimation.setSearchMethod(tree); 

    pcl::PointCloud<pcl::Normal>::Ptr source_normals(new pcl::PointCloud< pcl::Normal>); 
    normalEstimation.setRadiusSearch(0.2); 
    normalEstimation.compute(*source_normals); 

    pcl::PointCloud<pcl::FPFHSignature33>::Ptr source_features(new pcl::PointCloud<pcl::FPFHSignature33>()); 
    pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh; 
    fpfh.setInputCloud(source_cloud); 
    fpfh.setInputNormals(source_normals); 
    fpfh.setIndices(keypoints_indices); 
    fpfh.setSearchMethod(tree); 
    fpfh.setRadiusSearch(0.2); 
    fpfh.compute(*source_features); 

    /* SHOT optional Descriptor 
    pcl::PointCloud<pcl::SHOT352>::Ptr source_features(new pcl::PointCloud<pcl::SHOT352>()); 
    pcl::SHOTEstimation< pcl::PointXYZ, pcl::Normal, pcl::SHOT352 > shot; 
    shot.setSearchMethod(tree); //kdtree 
    shot.setIndices(keypoints_indices); //keypoints 
    shot.setInputCloud(source_cloud); //input 
    shot.setInputNormals(source_normals); //normals 
    shot.setRadiusSearch(0.2); //support 
    shot.compute(*source_features); //descriptors 
    */ 


//Target Point Cloud 

    pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud(new PointCloud<PointXYZ>()); 
    loadPCDFile("cloudASCII003.pcd", *target_cloud); 
    std::cout << "File 2 points: " << target_cloud->points.size() << std::endl; 

    // Compute model_resolution 

    double model_resolution_1 = computeCloudResolution(target_cloud); 

    pcl::ISSKeypoint3D<pcl::PointXYZ, pcl::PointXYZ> iss_detector_1; 
    pcl::PointCloud<pcl::PointXYZ>::Ptr target_keypoints(new pcl::PointCloud<pcl::PointXYZ>()); 

    iss_detector_1.setSearchMethod(tree); 
    iss_detector_1.setSalientRadius(10 * model_resolution_1); 
    iss_detector_1.setNonMaxRadius(8 * model_resolution_1); 
    iss_detector_1.setThreshold21(0.2); 
    iss_detector_1.setThreshold32(0.2); 
    iss_detector_1.setMinNeighbors(10); 
    iss_detector_1.setNumberOfThreads(10); 
    iss_detector_1.setInputCloud(target_cloud); 
    iss_detector_1.compute((*target_keypoints)); 
    pcl::PointIndicesConstPtr keypoints_indices_1 = iss_detector_1.getKeypointsIndices(); 


    std::cout << "No of ISS points in the result are " << (*target_keypoints).points.size() << std::endl; 
    savePCDFileASCII("ISSKeypoints2.pcd", (*target_keypoints)); 


    // Compute the normals 
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation_1; 
    normalEstimation_1.setInputCloud(target_cloud); 
    normalEstimation_1.setSearchMethod(tree); 

    pcl::PointCloud<pcl::Normal>::Ptr target_normals(new pcl::PointCloud< pcl::Normal>); 
    normalEstimation_1.setRadiusSearch(0.2); 
    normalEstimation_1.compute(*target_normals); 


    pcl::PointCloud<pcl::FPFHSignature33>::Ptr target_features(new pcl::PointCloud<pcl::FPFHSignature33>()); 
    pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh1; 
    fpfh1.setInputCloud(target_cloud); 
    fpfh1.setInputNormals(target_normals); 
    fpfh1.setIndices(keypoints_indices_1); 
    fpfh1.setSearchMethod(tree); 
    fpfh1.setRadiusSearch(0.2); 
    fpfh1.compute(*target_features); 

    /* Shot Optional 
    pcl::PointCloud<pcl::SHOT352>::Ptr target_features(new pcl::PointCloud<pcl::SHOT352>()); 
    pcl::SHOTEstimation< pcl::PointXYZ, pcl::Normal, pcl::SHOT352 > shot_1; 
    shot_1.setSearchMethod(tree); //kdtree 
    shot_1.setIndices(keypoints_indices_1); //keypoints 
    shot_1.setInputCloud(target_cloud); //input 
    shot_1.setInputNormals(target_normals); //normals 
    shot_1.setRadiusSearch(0.2); //support 
    shot_1.compute(*target_features); //descriptors 
    */ 


// estimate correspondences 
    pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::FPFHSignature33> est; 
    pcl::CorrespondencesPtr correspondences(new pcl::Correspondences()); 
    est.setInputSource(source_features); 
    est.setInputTarget(target_features); 
    est.determineCorrespondences(*correspondences); 

    // Duplication rejection Duplicate 

    pcl::CorrespondencesPtr correspondences_result_rej_one_to_one(new pcl::Correspondences()); 
    pcl::registration::CorrespondenceRejectorOneToOne corr_rej_one_to_one; 
    corr_rej_one_to_one.setInputCorrespondences(correspondences); 
    corr_rej_one_to_one.getCorrespondences(*correspondences_result_rej_one_to_one); 


    // Correspondance rejection RANSAC 

    Eigen::Matrix4f transform = Eigen::Matrix4f::Identity(); 
    pcl::registration::CorrespondenceRejectorSampleConsensus<pcl::PointXYZ> rejector_sac; 
    pcl::CorrespondencesPtr correspondences_filtered(new pcl::Correspondences()); 
    rejector_sac.setInputSource(source_keypoints); 
    rejector_sac.setInputTarget(target_keypoints); 
    rejector_sac.setInlierThreshold(2.5); // distance in m, not the squared distance 
    rejector_sac.setMaximumIterations(1000000); 
    rejector_sac.setRefineModel(false); 
    rejector_sac.setInputCorrespondences(correspondences_result_rej_one_to_one);; 
    rejector_sac.getCorrespondences(*correspondences_filtered); 
    correspondences.swap(correspondences_filtered); 
    std::cout << correspondences->size() << " vs. " << correspondences_filtered->size() << std::endl; 
    transform = rejector_sac.getBestTransformation(); // Transformation Estimation method 1 


    // Transformation Estimation method 2 
    //pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ> transformation_estimation; 
    //transformation_estimation.estimateRigidTransformation(*source_keypoints, *target_keypoints, *correspondences, transform); 
    std::cout << "Estimated Transform:" << std::endl << transform << std::endl; 

    ///refinement transform source using transformation matrix /////////////////////////////////////////////////////// 

    pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_source(new pcl::PointCloud<pcl::PointXYZ>); 
    pcl::PointCloud<pcl::PointXYZ>::Ptr final_output(new pcl::PointCloud<pcl::PointXYZ>); 
    pcl::transformPointCloud(*source_cloud, *transformed_source, transform); 
    savePCDFileASCII("Transformed.pcd", (*transformed_source)); 


    // viewer.setBackgroundColor (0, 0, 0); 
    viewer.setBackgroundColor(1, 1, 1); 
    viewer.resetCamera(); 
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_source_cloud(transformed_source, 150, 80, 80); 
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_source_keypoints(source_keypoints, 255, 0, 0); 

    viewer.addPointCloud<pcl::PointXYZ>(transformed_source, handler_source_cloud, "source_cloud"); 
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "source_cloud"); 
    viewer.addPointCloud<pcl::PointXYZ>(source_keypoints, handler_source_keypoints, "source_keypoints"); 

    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_target_cloud(target_cloud, 80, 150, 80); 
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_target_keypoints(target_keypoints, 0, 255, 0); 

    viewer.addPointCloud<pcl::PointXYZ>(target_cloud, handler_target_cloud, "target_cloud"); 
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "target_cloud"); 
    viewer.addPointCloud<pcl::PointXYZ>(target_keypoints, handler_target_keypoints, "target_keypoints"); 
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "target_keypoints"); 
    viewer.addCorrespondences<pcl::PointXYZ>(source_keypoints, target_keypoints, *correspondences, 1, "correspondences"); 

    pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp; 
    icp.setInputSource(transformed_source); 
    icp.setInputTarget(target_cloud); 
    icp.align(*final_output); 
    std::cout << "has converged:" << icp.hasConverged() << " score: " << 
    icp.getFitnessScore() << std::endl; 
    std::cout << icp.getFinalTransformation() << std::endl; 


    ICPView.addPointCloud<pcl::PointXYZ>(final_output, handler_source_cloud, "Final_cloud"); 
    ICPView.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "source_keypoints"); 
    while (!viewer.wasStopped()) 
    { 

     viewer.spinOnce(100); 
     boost::this_thread::sleep(boost::posix_time::microseconds(100000)); 
    } 
    while (!ICPView.wasStopped()) 
    { 

     ICPView.spinOnce(100); 
     boost::this_thread::sleep(boost::posix_time::microseconds(100000)); 
    } 
    /* 
    // Setup the SHOT features 
    typedef pcl::SHOT352 ShotFeature; 
    pcl::SHOTEstimation<pcl::PointXYZ, pcl::Normal, ShotFeature> shotEstimation; 

    shotEstimation.setInputCloud(model); 
    shotEstimation.setInputNormals(normals); 
    shotEstimation.setIndices(keypoint_indices); 

    // Use the same KdTree from the normal estimation 
    shotEstimation.setSearchMethod(tree); 
    pcl::PointCloud<ShotFeature>::Ptr shotFeatures(new pcl::PointCloud<ShotFeature>); 
    //spinImageEstimation.setRadiusSearch (0.2); 
    shotEstimation.setKSearch(10); 

    // Actually compute the spin images 
    shotEstimation.compute(*shotFeatures); 
    std::cout << "SHOT output points.size(): " << shotFeatures->points.size() << std::endl; 

    // Display and retrieve the SHOT descriptor for the first point. 
    ShotFeature descriptor = shotFeatures->points[0]; 
    std::cout << descriptor << std::endl; 
    */ 

    return 0; 

} 

最後感謝,我真的很感謝你的幫助......

回答

0

爲了提高所花費的時間,儘量去除異常值和下采樣,負載來源雲端後。

+0

首先感謝您的回覆。我感謝您的幫助。其次,你認爲這可能會提高函數估計的效率嗎? – Mohamed

+0

其實我得出的結論是,有一個關於函數估計和過濾的問題,我有很多錯誤匹配 – Mohamed