2
我已經通過checkpoint = ModelCheckpoint(filepath='weights.hdf5')
回調訓練了網絡模型並保存了它的權重和體系結構。在培訓過程中,我使用多個GPU通過調用下面的funtion:
當多個GPU用於訓練時,加載預訓練模型失敗
def make_parallel(model, gpu_count):
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat([ shape[:1] // parts, shape[1:] ],axis=0)
stride = tf.concat([ shape[:1] // parts, shape[1:]*0 ],axis=0)
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
#Place a copy of the model on each GPU, each getting a slice of the batch
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
inputs = []
#Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
#Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs in outputs_all:
merged.append(merge(outputs, mode='concat', concat_axis=0))
return Model(input=model.inputs, output=merged)
隨着測試代碼:
from keras.models import Model, load_model
import numpy as np
import tensorflow as tf
model = load_model('cpm_log/deneme.hdf5')
x_test = np.random.randint(0, 255, (1, 368, 368, 3))
output = model.predict(x = x_test, batch_size=1)
print output[4].shape
我得到了下面的錯誤:
Traceback (most recent call last):
File "cpm_test.py", line 5, in <module>
model = load_model('cpm_log/Jun5_1000/deneme.hdf5')
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 240, in load_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 301, in model_from_config
return layer_module.deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python2.7/dist-packages/keras/layers/__init__.py", line 46, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python2.7/dist-packages/keras/utils/generic_utils.py", line 140, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2378, in from_config
process_layer(layer_data)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2373, in process_layer
layer(input_tensors[0], **kwargs)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 578, in __call__
output = self.call(inputs, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/keras/layers/core.py", line 659, in call
return self.function(inputs, **arguments)
File "/home/muhammed/DEV_LIBS/developments/mocap/pose_estimation/training/cpm/multi_gpu.py", line 12, in get_slice
def get_slice(data, idx, parts):
NameError: global name 'tf' is not defined
通過檢查錯誤輸出,我決定問題是與並行化代碼。但是,我無法解決問題。
如果在'get_slice'定義的開始處添加'import tensorflow as tf'會發生什麼? – michetonu
它已被添加。什麼也沒有變。 – mkocabas