我想知道是否可以保存部分訓練的Keras模型,並在加載模型後繼續訓練。加載訓練有素的Keras模型並繼續訓練
原因是我將來會有更多的訓練數據,我不想再重新訓練整個模型。
其中我使用的功能是:
#Partly train model
model.fit(first_training, first_classes, batch_size=32, nb_epoch=20)
#Save partly trained model
model.save('partly_trained.h5')
#Load partly trained model
from keras.models import load_model
model = load_model('partly_trained.h5')
#Continue training
model.fit(second_training, second_classes, batch_size=32, nb_epoch=20)
編輯1:加入充分工作示例
隨着第一數據集之後10曆元的最後一個曆元的損失將是0.0748,準確度爲0.9863。
保存,刪除和重新加載模型後,在第二個數據集上訓練的模型的損失和準確性將分別爲0.1711和0.9504。
這是由新的訓練數據還是由完全重新訓練的模型造成的?
"""
Model by: http://machinelearningmastery.com/
"""
# load (downloaded if needed) the MNIST dataset
import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import np_utils
from keras.models import load_model
numpy.random.seed(7)
def baseline_model():
model = Sequential()
model.add(Dense(num_pixels, input_dim=num_pixels, init='normal', activation='relu'))
model.add(Dense(num_classes, init='normal', activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
if __name__ == '__main__':
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# flatten 28*28 images to a 784 vector for each image
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train/255
X_test = X_test/255
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
# build the model
model = baseline_model()
#Partly train model
dataset1_x = X_train[:3000]
dataset1_y = y_train[:3000]
model.fit(dataset1_x, dataset1_y, nb_epoch=10, batch_size=200, verbose=2)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
#Save partly trained model
model.save('partly_trained.h5')
del model
#Reload model
model = load_model('partly_trained.h5')
#Continue training
dataset2_x = X_train[3000:]
dataset2_y = y_train[3000:]
model.fit(dataset2_x, dataset2_y, nb_epoch=10, batch_size=200, verbose=2)
scores = model.evaluate(X_test, y_test, verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
你測試過了嗎?我認爲沒有理由不這樣做。 – maz
我現在看到的是,加載模型後我的精度下降了大約10%(僅在第一個時代)。如果重新加載工作,這當然是由新的訓練數據造成的。但我只想確保事實確實如此。 –
您是使用model.save直接保存模型還是使用模型檢查點(https://keras.io/callbacks/#example-model-checkpoints)?如果您使用的是model.save,您是否有機會保存最新的模型(即最後一個時代)而不是最好的模型(最低錯誤)?你能提供實際的代碼嗎? – maz