1
我想運行加權數據的線性迴歸。
當使用speedlm
時,當數據中存在缺失值時,我收到錯誤消息。運行speedlm加權數據與缺失值
library(speedglm)
sampleData <- data.frame(w = round(runif(12,0,1)),
target = rnorm(12,100,50),
predictor = c(NA, rnorm(10, 40, 10),NA))
summary(sampleData)
w target predictor Min. :0.0000 Min. : -3.381 Min. :22.58 1st Qu.:0.0000 1st Qu.: 48.321 1st Qu.:30.45 Median :1.0000 Median : 84.156 Median :37.09 Mean :0.5833 Mean : 92.306 Mean :35.03 3rd Qu.:1.0000 3rd Qu.:119.891 3rd Qu.:41.96 Max. :1.0000 Max. :223.896 Max. :43.48 NA's :2
#run linear regression without weights
linearNoWeights <- lm(formula("target~predictor"), data = sampleData)
speedLinearNoWeights <- speedlm(formula("target~predictor"), data = sampleData)
#run linear regression with weights
linearWithWeights <- lm(formula("target~predictor"), data = sampleData, weights =sampleData[,"w"])
speedLinearWithWheights <- speedlm(formula("target~predictor"), data = sampleData, weights =sampleData[,"w"])
Error in base::crossprod(x, y) : non-conformable arguments In addition: Warning messages: 1: In sqw * X : longer object length is not a multiple of shorter object length 2: In sqw * y : longer object length is not a multiple of shorter object length Called from: base::crossprod(x, y)
有沒有解決這個不逼我運行迴歸之前解決數據的任何方式?
爲什麼您反對在擬合模型之前從數據集中移除這兩個觀察值? – Roland
@Roland我在這裏展示的是一個例子,我實際上有很多數據框,而NA對於其餘的計算很重要 – eliavs