2015-10-19 200 views
0

我正試圖優化這個內核。該內核的CPU版本比GPU版本快4倍。我預計GPU版本會更快。 這可能是因爲我們有很多內存訪問,這就是爲什麼我們的性能較差。我正在使用Intel HD 2500和OpenCL 1.2。優化opencl內核

的GPU內核是:

__kernel void mykernel(__global unsigned char *inp1,  
         __global unsigned char *inp2,  
         __global unsigned char *inp3,   
         __global unsigned char *inp4,   
         __global unsigned char *outp1,  
         __global unsigned char *outp2,  
         __global unsigned char *outp3,  
         __global unsigned char *outp4,  
         __global unsigned char *lut,   
         uint size 
         )    
{ 
    unsigned char x1, x2, x3, x4; 
    unsigned char y1, y2, y3, y4; 
    const int x  = get_global_id(0);      
    const int y  = get_global_id(1);       
    const int width = get_global_size(0);       
    const uint id = y * width + x;        
    x1 = inp1[id]; 
    x2 = inp2[id]; 
    x3 = inp3[id]; 
    x4 = inp4[id]; 
    y1 = (x1 & 0xff) | (x2>>2 & 0xaa) | (x3>>4 & 0x0d) | (x4>>6 & 0x02); 
    y2 = (x1<<2 & 0xff) | (x2 & 0xaa) | (x3>>2 & 0x0d) | (x4>>4 & 0x02); 
    y3 = (x1<<4 & 0xff) | (x2<<2 & 0xaa) | (x3 & 0x0d) | (x4>>2 & 0x02); 
    y4 = (x1<<6 & 0xff) | (x2<<4 & 0xaa) | (x3<<2 & 0x0d) | (x4 & 0x02); 
    // lookup table 
    y1 = lut[y1]; 
    y2 = lut[y2]; 
    y3 = lut[y3]; 
    y4 = lut[y4]; 
    outp1[id] = (y1 & 0xc0) 
       | ((y2 & 0xc0) >> 2) 
       | ((y3 & 0xc0) >> 4) 
       | ((y4 & 0xc0) >> 6);   
    outp2[id] = ((y1 & 0x30) << 2) 
       | (y2 & 0x30) 
       | ((y3 & 0x30) >> 2) 
       | ((y4 & 0x30) >> 4);    
    outp3[id] = ((y1 & 0x0c) << 4) 
       | ((y2 & 0x0c) << 2) 
       | (y3 & 0x0c) 
       | ((y4 & 0x0c) >> 2);    
    outp4[id] = ((y1 & 0x03) << 6) 
       | ((y2 & 0x03) << 4) 
       | ((y3 & 0x03) << 2) 
       | (y4 & 0x03); 
} 

我用:

size_t localWorkSize[1], globalWorkSize[1]; 
    localWorkSize[0] = 1; 
    globalWorkSize[0] = X*Y; // X,Y define a data space of 15 - 20 MB 

LocalWorkSize可以改變1之間 - 這是很奇怪的

for LocalWorkSize = 1 I have 
CPU = 0.067Sec 
GPU = 0.20Sec 
for LocalWorkSize = 256 I have 
CPU = 0.067Sec 
GPU = 0.34Sec 
。你能給我一些想法,爲什麼我得到這些奇怪的數字?你有沒有關於如何優化這個內核的提示?

我主要如下所示:

int main(int argc, char** argv) 
{ 
int err,err1,j,i;      // error code returned from api calls and other 
    clock_t start, end;     // measuring performance variables 
    cl_device_id device_id;    // compute device id 
    cl_context context;     // compute context 
    cl_command_queue commands;   // compute command queue 
    cl_program program_ms_naive;  // compute program 
    cl_kernel kernel_ms_naive;   // compute kernel 
    // ... dynamically allocate arrays 
    // ... initialize arrays 
cl_uint dev_cnt = 0; 
    clGetPlatformIDs(0, 0, &dev_cnt); 

    cl_platform_id platform_ids[100]; 
    clGetPlatformIDs(dev_cnt, platform_ids, NULL); 
    // Connect to a compute device 
    err = clGetDeviceIDs(platform_ids[0], CL_DEVICE_TYPE_GPU, 1, &device_id, NULL); 
    // Create a compute context 
    context = clCreateContext(0, 1, &device_id, NULL, NULL, &err); 
    // Create a command queue 
    commands = clCreateCommandQueue(context, device_id, 0, &err); 
    // Create the compute programs from the source file 
    program_ms_naive = clCreateProgramWithSource(context, 1, (const char **) &kernelSource_ms, NULL, &err); 
    // Build the programs executable 
    err = clBuildProgram(program_ms_naive, 0, NULL, NULL, NULL, NULL); 
    // Create the compute kernel in the program we wish to run 
    kernel_ms_naive = clCreateKernel(program_ms_naive, "ms_naive", &err); 

    d_A1 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, mem_size_cpy/4, h_A1, &err); 
    d_A2 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, mem_size_cpy/4, h_A2, &err); 
    d_A3 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, mem_size_cpy/4, h_A3, &err); 
    d_A4 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, mem_size_cpy/4, h_A4, &err); 
    d_lut = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 256, h_ltable, &err); 
    d_B1 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, mem_size_cpy/4, NULL, &err); 
    d_B2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, mem_size_cpy/4, NULL, &err); 
    d_B3 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, mem_size_cpy/4, NULL, &err); 
    d_B4 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, mem_size_cpy/4, NULL, &err); 

    int size = YCOLUMNS*XROWS/4; 
    int size_b = size * 4; 
    err = clSetKernelArg(kernel_ms_naive, 0, sizeof(cl_mem), (void *)&(d_A1)); 
    err |= clSetKernelArg(kernel_ms_naive, 1, sizeof(cl_mem), (void *)&(d_A2)); 
    err |= clSetKernelArg(kernel_ms_naive, 2, sizeof(cl_mem), (void *)&(d_A3)); 
    err |= clSetKernelArg(kernel_ms_naive, 3, sizeof(cl_mem), (void *)&(d_A4)); 
    err |= clSetKernelArg(kernel_ms_naive, 4, sizeof(cl_mem), (void *)&d_B1); 
    err |= clSetKernelArg(kernel_ms_naive, 5, sizeof(cl_mem), (void *)&(d_B2)); 
    err |= clSetKernelArg(kernel_ms_naive, 6, sizeof(cl_mem), (void *)&(d_B3)); 
    err |= clSetKernelArg(kernel_ms_naive, 7, sizeof(cl_mem), (void *)&(d_B4)); 
    err |= clSetKernelArg(kernel_ms_naive, 8, sizeof(cl_mem), (void *)&d_lut); //__global 
    err |= clSetKernelArg(kernel_ms_naive, 9, sizeof(cl_uint), (void *)&size_b); 
    size_t localWorkSize[1], globalWorkSize[1]; 
    localWorkSize[0] = 256; 
    globalWorkSize[0] = XROWS*YCOLUMNS; 
    start = clock(); 
    for (i=0;i< EXECUTION_TIMES;i++) 
    { 
     err1 = clEnqueueNDRangeKernel(commands, kernel_ms_naive, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL); 
     err = clFinish(commands); 
    } 
    end = clock(); 

return 0; 
} 
+1

請發佈[MCVE]。 –

+0

本地工作大小應該是256而不是1. 1 =最低的硬件佔用率和最低的性能。也許它需要8最低或8的倍數。 –

+0

我知道我應該使用256.正如你可以在我的初始職位看到的本地工作組大小256我有一個更大的執行時間比本地工作組大小1 – Nick

回答

2

恆存儲器用於值的少量廣播到所有的工作項目的作用類似於一個恆定的私人寄存器,從而非常快的訪問速度。普通的GPU設備可以支持高達16kb的常量內存。應該足以容納LUT。

你可以用常量內存試試,作爲全球接入瓶頸的一個簡單的解決方案:

__kernel void mykernel(const __global unsigned char *inp1,  
         const __global unsigned char *inp2,  
         const __global unsigned char *inp3,   
         const __global unsigned char *inp4,   
         __global unsigned char *outp1,  
         __global unsigned char *outp2,  
         __global unsigned char *outp3,  
         __global unsigned char *outp4,  
         __constant unsigned char *lut,   
         uint size 
         )    
{ 
    ... 
} 

但正確的解決辦法是重塑你的代碼:

  • CHAR4的使用向量,而不是的4個不同的緩衝區(因爲 斷裂合併)[它可以給你一個很大的提升到x4]
  • 在矢量上操作[輕微提升]
  • 對於LUT
  • 使用本地/常量內存[它可以減少1個非合併閱讀LUT,也許2X-3X的]

不過這將是難以被擊敗的CPU的方法,由於大IO約束。