1
我正在構建一個AVL樹,並試圖以相反的順序(降序)打印它。我不想更改我的insert
函數,因爲我有時也會使用經典的有序打印。所以,我認爲 - >我需要交換訪問right
和left
節點,它將被反向打印。打印逆序AVL樹
void inOrder(struct node *root)
{
if(root != NULL)
{
inOrder(root->left);
printf("%lf\n", root->key);
inOrder(root->right);
}
}
void inOrderDecreasing(struct node *root)
{
if(root != NULL)
{
inOrder(root->right);
printf("%lf\n", root->key);
inOrder(root->left);
}
}
但是,這是行不通的。 inOrder
按原樣工作,但其他功能不適用。
我得到什麼:
45.943100
78.321899
99.200996
32.750999
10.475900
25.170500
如果有人想看看我的插入功能:
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct node *rightRotate(struct node *y)
{
struct node *x = y->left;
struct node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct node *leftRotate(struct node *x)
{
struct node *y = x->right;
struct node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;
// Return new root
return y;
}
/*
* RECAP Balance is based on Height
* Hn = Hl - Hr
* so
* positive => LEFT HEAVY
* negative => RIGHT HEAVY
*/
// Get Balance factor of node N
int getBalance(struct node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
struct node* insert(struct node* node, float key)
{
/* 1. Perform the normal BST insertion */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else
node->right = insert(node->right, key);
/* 2. Update height of this ancestor node */
node->height = max(height(node->left), height(node->right)) + 1;
/* 3. Get the balance factor of this ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes UNBALANCED, then there are 4 cases
/* CASE # 1 => LEFT-LEFT aka left?
T1, T2, T3 and T4 are subtrees.
z y
/\ / \
y T4 Right Rotate (z) x z
/\ - - - - - - - - -> /\ /\
x T3 T1 T2 T3 T4
/\
T1 T2
*/
// Left Left Case in code
if (balance > 1 && key < node->left->key)
return rightRotate(node);
/* Case #2 => RIGHT-RIGHT aka right?
z y
/\ / \
T1 y Left Rotate(z) z x
/\ - - - - - - - --> /\ /\
T2 x T1 T2 T3 T4
/\
T3 T4
*/
// Right Right Case in code
if (balance < -1 && key > node->right->key)
return leftRotate(node);
/* CASE # 3 => LEFT-RIGHT aka left-right?
z z x
/\ / \ /\
y T4 Left Rotate (y) x T4 Right Rotate(z) y z
/\ - - - - - - - - -> /\ - - - - - - - ->/\ /\
T1 x y T3 T1 T2 T3 T4
/\ /\
T2 T3 T1 T2
*/
// Left Right Case in code
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
/* CASE #4 = RIGHT-LEFT aka right-left?
z z x
/\ /\ /\
T1 y Right Rotate (y) T1 x Left Rotate(z) z y
/\ - - - - - - - - -> /\ - - - - - - - ->/\ /\
x T4 T2 y T1 T2 T3 T4
/\ /\
T2 T3 T3 T4
*/
// Right Left Case in code
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
你應該調用inOrder遞減遞減,否則只是前兩個孩子'交換' – m47h
哦,上帝,我不能相信我輸入了所有這些,仍然錯過了這個改變! – Rorschach