-7
Matlab的包含以下功能:- [R包相當於Matlab的gmdistribution.fit()
obj = gmdistribution.fit(X,k)
如圖所示在此website。
是否有R包也提供此功能?
Matlab的包含以下功能:- [R包相當於Matlab的gmdistribution.fit()
obj = gmdistribution.fit(X,k)
如圖所示在此website。
是否有R包也提供此功能?
MClust包中包含函數densityMclust,該函數生成一個對象,該對象包含擬合高斯混合模型的參數估計以及密度本身。從MClust手冊:
> densWaiting <- densityMclust(faithful$waiting) > summary(densWaiting, parameters = TRUE) ------------------------------------------------------- Density estimation via Gaussian finite mixture modeling ------------------------------------------------------- Mclust E (univariate, equal variance) model with 2 components: log.likelihood n df BIC -1034 272 4 -2090.4 Clustering table: 1 2 99 173 Mixing probabilities: 1 2 0.36102 0.63898 Means: 1 2 54.619 80.094 Variances: 1 2 34.439 34.439 A two-components mixture of Gaussian variables with the same variance is selected by BIC. The parameter estimates can be read from the summary output. A plot of density estimate can be obtained using the corresponding plot method: > plot(densWaiting) The density can also be plotted together with a histogram of the observed data by using the optional argument data: > plot(densWaiting, data = faithful$waiting)
看看EMCluster包是否適合您的需求。
install.packages("EMCluster")
# excerpt from pg 12 of the EMCluster manual.
library(EMCluster, quiet = TRUE)
set.seed(1234)
x <- da1$da
ret.em <- init.EM(x, nclass = 2, method = "em.EM")
plotem(ret.em, x)
如果不是,那麼R中有另一個Model-based clustering methods。享受!
我一派 「中的R高斯混合模型」 和[此](http://cran.r-project.org/web/views/Cluster.html)中的溶液第一個環節。 –