感謝您考慮回答我的問題。我有使用TensorFlow一個問題,這是我輸入我的數據,我不斷收到輸出:Tensorflow Nueral Network無法正常工作
('Epoch ', 0, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 1, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 2, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 3, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 4, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 5, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 6, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 7, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 8, ' completed out of ', 10, 'loss:', nan)
('Epoch ', 9, ' completed out of ', 10, 'loss:', nan)
('Accuracy:', 1.0)
我X_train數據是500 1000矩陣,其中每行包含數字,如:
-0.38484444, 1.4542222222 ...
我希望你明白... 而我的Y_train數據由二進制分類(0,1)組成。 len(X_train [0])返回1000,這是樣本數量(列)
我不太清楚還有什麼需要澄清我的問題;我將包括我簡單的TensorFlow代碼,如果您需要關於我的代碼或問題的更多說明,請告訴我。
謝謝您的時間
import tensorflow as tf
import pandas as pd
import numpy as np
da = pd.read_csv("data.csv", header=None)
ta = pd.read_csv("BMI.csv")
X_data = da.iloc[:, :1000]
Y_data = np.expand_dims(ta.iloc[:, -1], axis = 1)
X_train = X_data.iloc[:500 :,]
X_test = X_data.iloc[500:,:]
Y_train = Y_data[:500 :,]
Y_test = Y_data[735:,:]
X_train = np.array(X_train)
X_test = np.array(X_test)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 1
batch_size = 10
x = tf.placeholder('float', [None, len(X_train[0])])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([len(X_train[0]), n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_nueral_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(X_train[0]):
start = i
end = i + batch_size
batch_x = np.array(X_train[start:end])
batch_y = np.array(Y_train[start:end])
_, c = sess.run([optimizer, cost], feed_dict= {x: batch_x, y: batch_y})
epoch_loss += c
i += batch_size
print('Epoch ', epoch, ' completed out of ', hm_epochs, 'loss:', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x:X_test, y:Y_test}))
train_nueral_network(x)
您可以打印並附上batch_y的幾行嗎? – amirbar