2016-11-30 43 views
1

我正在尋找一種方法來爲matplotlib獲取適當的顏色高程圖。等效於Matlab的Demcmap的Python(高程+/-正確的顏色映射)

cmap'terrain'看起來不錯,但顏色標註不是基於零(即如果標尺爲0-> 5000m,則0-> 1000m範圍可能是藍色陰影,您將假定爲低於海平面)

例如: enter image description here

Matlab的功能相當於是: demcmap

什麼是讓matplotlib圍繞轉變地形顏色表的綠色/棕色和藍色的最佳途徑零電場標記?

+0

的matplotlib顏色表應該如何知道哪些數據值在情節屬於海平面? – ImportanceOfBeingErnest

+0

@ImportanceOfBeingErnest海平面是0米,因此我說爲什麼要在零高程圖周圍移動顏色表 – mjp

回答

3

不幸的是,matplotlib不提供Matlab的功能demcmap。 python basemap包中實際上可能有一些內置功能,但我不知道。

所以,堅持matplotlib機載選項,我們可以繼承Normalize的子類來建立一個以色彩地圖中間點爲中心的顏色標準化。這項技術可以在StackOverflow的another question中找到,並根據具體需要進行調整,即設置一個sealevel(可能最好選擇爲0),並將顏色地圖col_val(範圍在0和1之間)的值設置爲該海平面應該對應的值。在地形圖的情況下,似乎0.22,對應turqoise顏色,可能是一個不錯的選擇。
然後可以將Normalize實例作爲參數提供給imshow。可以在圖片的第一行看到結果數字。

由於圍繞海平面的平穩過渡,0左右的值出現在turqoise顏色,使得很難區分陸地和海洋。
因此,我們可以稍微更改一下地形圖並剪掉這些顏色,以便海岸線更清晰可見。這是通過地圖的combining two parts完成的,範圍從0到0.17和從0.25到1,從而切掉了它的一部分。

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.colors 

class FixPointNormalize(matplotlib.colors.Normalize): 
    """ 
    Inspired by https://stackoverflow.com/questions/20144529/shifted-colorbar-matplotlib 
    Subclassing Normalize to obtain a colormap with a fixpoint 
    somewhere in the middle of the colormap. 

    This may be useful for a `terrain` map, to set the "sea level" 
    to a color in the blue/turquise range. 
    """ 
    def __init__(self, vmin=None, vmax=None, sealevel=0, col_val = 0.21875, clip=False): 
     # sealevel is the fix point of the colormap (in data units) 
     self.sealevel = sealevel 
     # col_val is the color value in the range [0,1] that should represent the sealevel. 
     self.col_val = col_val 
     matplotlib.colors.Normalize.__init__(self, vmin, vmax, clip) 

    def __call__(self, value, clip=None): 
     x, y = [self.vmin, self.sealevel, self.vmax], [0, self.col_val, 1] 
     return np.ma.masked_array(np.interp(value, x, y)) 

# Combine the lower and upper range of the terrain colormap with a gap in the middle 
# to let the coastline appear more prominently. 
# inspired by https://stackoverflow.com/questions/31051488/combining-two-matplotlib-colormaps 
colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 56)) 
colors_land = plt.cm.terrain(np.linspace(0.25, 1, 200)) 
# combine them and build a new colormap 
colors = np.vstack((colors_undersea, colors_land)) 
cut_terrain_map = matplotlib.colors.LinearSegmentedColormap.from_list('cut_terrain', colors) 



# invent some data (height in meters relative to sea level) 
data = np.linspace(-1000,2400,15**2).reshape((15,15)) 


# plot example data 
fig, ax = plt.subplots(nrows = 2, ncols=3, figsize=(11,6)) 
plt.subplots_adjust(left=0.08, right=0.95, bottom=0.05, top=0.92, hspace = 0.28, wspace = 0.15) 

plt.figtext(.5, 0.95, "Using 'terrain' and FixedPointNormalize", ha="center", size=14) 
norm = FixPointNormalize(sealevel=0, vmax=3400) 
im = ax[0,0].imshow(data+1000, norm=norm, cmap=plt.cm.terrain) 
fig.colorbar(im, ax=ax[0,0]) 

norm2 = FixPointNormalize(sealevel=0, vmax=3400) 
im2 = ax[0,1].imshow(data, norm=norm2, cmap=plt.cm.terrain) 
fig.colorbar(im2, ax=ax[0,1]) 

norm3 = FixPointNormalize(sealevel=0, vmax=0) 
im3 = ax[0,2].imshow(data-2400.1, norm=norm3, cmap=plt.cm.terrain) 
fig.colorbar(im3, ax=ax[0,2]) 

plt.figtext(.5, 0.46, "Using custom cut map and FixedPointNormalize (adding hard edge between land and sea)", ha="center", size=14) 
norm4 = FixPointNormalize(sealevel=0, vmax=3400) 
im4 = ax[1,0].imshow(data+1000, norm=norm4, cmap=cut_terrain_map) 
fig.colorbar(im4, ax=ax[1,0]) 

norm5 = FixPointNormalize(sealevel=0, vmax=3400) 
im5 = ax[1,1].imshow(data, norm=norm5, cmap=cut_terrain_map) 
cbar = fig.colorbar(im5, ax=ax[1,1]) 

norm6 = FixPointNormalize(sealevel=0, vmax=0) 
im6 = ax[1,2].imshow(data-2400.1, norm=norm6, cmap=cut_terrain_map) 
fig.colorbar(im6, ax=ax[1,2]) 

for i, name in enumerate(["land only", "coast line", "sea only"]): 
    for j in range(2): 
     ax[j,i].text(0.96,0.96,name, ha="right", va="top", transform=ax[j,i].transAxes, color="w") 

plt.show() 

enter image description here