我想用Tensorflow來分類一些對象表示。我用同樣的結構如在Tensorflow CIFAR-10例如,具有被定義爲最後一個層:從logits獲取概率 - logits和標籤大小不一
with tf.variable_scope('sigmoid_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, num_classes],
stddev=1/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [num_classes],
initializer)
sigmoid_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(sigmoid_linear)
return sigmoid_linear
在我的情況,num_classes
是2
,並供給到神經網絡的通道中的代表性量爲8.此外,我目前只用5個例子進行調試。最後一層的輸出形狀爲[40,2]
。我預計第一維是由於5 examples * 8 channels
,第二維由於類的數量。
爲了使用比較使用的例如logits和標籤, tensorflow.nn.SparseSoftmaxCrossEntropyWithLogits
我需要他們有一個共同的形狀。如何解釋當前形狀中的當前logits內容,以及如何將logits的第一維減至num_classes
?
編輯:推理函數的輸入形狀的形狀爲[5,101,1008,8]
。推理功能定義爲:
def inference(representations):
"""Build the model.
Args:
STFT spectra: spectra returned from distorted_inputs() or inputs().
Returns:
Logits.
"""
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, nChannels, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(representations, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], initializer,
)
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75,
name='norm1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], initializer)
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv2)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001/9.0, beta=0.75,
name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool2, [batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 384],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [384], initializer)
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[384, 192],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [192], initializer)
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
with tf.variable_scope('sigmoid_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, num_classes],
stddev=1/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [num_classes],
initializer)
sigmoid_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(sigmoid_linear)
return sigmoid_linear