我有這樣的錯誤:錯誤:Tensorflow BRNN logits和標籤必須是相同的大小
InvalidArgumentError (see above for traceback): logits and labels must
be same size: logits_size=[10,9] labels_size=[7040,9] [[Node:
SoftmaxCrossEntropyWithLogits =
SoftmaxCrossEntropyWithLogits[T=DT_FLOAT,
_device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Reshape_1)]]
但我無法找到發生此錯誤的張....我認爲這是出現尺寸不匹配......
我輸入尺寸是batch_size
* n_steps
* n_input
如此,這將是10 * 704 * 100,我想使輸出
batch_size
* n_steps
* n_classes
=>它將由10 * 700 * 9,通過雙向RNN
我應該如何改變這種代碼來修正這個錯誤?
裝置的batch_size DATAS的這樣的數:
數據1:ABCABCABCAAADDD ... ... 數據10:ABCCCCABCDBBAA ...
而且 n_step裝置,每個數據的長度(的數據是通過「O」填充,以固定每個數據的長度):704
而且 n_input意味着數據如何表達在這樣的每個數據的每個字母: A - [1,2,1, -1,...,-1]
和學習的輸出應該是這樣的: 輸出數據的1:XYZYXYZYYXY ... ...數據10 輸出:ZXYYRZYZZ ...
輸出的每個字母被影響由周圍的字母和輸入序列組成。
learning_rate = 0.001
training_iters = 100000
batch_size = 10
display_step = 10
# Network Parameters
n_input = 100
n_steps = 704 # timesteps
n_hidden = 50 # hidden layer num of features
n_classes = 9
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def BiRNN(x, weights, biases):
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
# Forward direction cell
lstm_fw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Backward direction cell
lstm_bw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception: # Old TensorFlow version only returns outputs not states
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = BiRNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
while step * batch_size < training_iters:
batch_x, batch_y = next_batch(batch_size, r_big_d, y_r_big_d)
#batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
test_x, test_y = next_batch(batch_size, v_big_d, y_v_big_d)
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_x, y: test_y}))
但是我有另一個問題 「輸出= tf.matmul(輸出,權重[ '出'])+偏差[ '出']」線。錯誤註釋如下所示:「尺寸必須相同,但對於'MatMul'(op:'MatMul'),其輸入形狀爲[7040,9],[128,9]」爲9和128。 –
哎呀固定。第一次重塑應該是很多* n_hidden,而不是很多* n_classes – DomJack