我試圖合併兩個不同的時間序列R中具有以下特點:R個時間序列,複雜的序列
- 數據必須是08:30和15:00之間每天的基礎上。
- 數據跨越數週,而不僅僅是某一天。
- 數據在隨機間隔中存在間隙。
- 兩個數據集將不能有縫隙在相同的時間間隔一定
我想從08:30合併這兩個數據集,與序列中所有時間至15:00和那裏有一個缺口在每一個,我想先前的價值(或下面的價值)結轉。
# I have verified that the csv files are imported correctly
# The first column contains dates. and the strptime
# function can convert strings into Date/Time objects.
#
sec1_dates <- strptime(sec1[,1], "%m/%d/%Y %H:%M:%S")
sec2_dates <- strptime(sec2[,1], "%m/%d/%Y %H:%M:%S")
# The second column contains the close.
# I use the zoo function to create zoo objects from that data.
# But for some reason this ends up creating duplicates PROBLEM 1
#
a <- zoo(sec1[,2], sec1_dates)
b <- zoo(sec2[,2], sec2_dates)
# I know that I need use seq to fill in gaps but I am clueless as to how
# Once I have the proper seq I can just use na.locf to fill the appropriate values
# HOWEVER seq(start(sec1_dates), end(sec1_dates), "min") would end up returning
# every minute for each day, and I only want 08:30 to 15:30. PROBLEM 2
# The merge function can combine two zoo objects, in union
# Obviously this fails because the two index sizes don't match PROBLEM 3
#
t.zoo <- merge(a, b, all=TRUE)
詹姆斯,你是對的問題1.謝謝。我證實csv文件是兩次拉數據並刪除數據解決了問題。我也使用瞭解決問題2的解決方案,但我不確定這是執行我想要做的最有效的方法。最終,我可能希望使用它來運行迴歸,並且在那一點上可能需要某種類型的迴路來提取任意數量的數據集。我可能會做的任何優化都將不勝感激。
更新的解決方案
library(zoo)
library(tseries)
# Read the CSV files into data frames
sec1 <- read.csv("C:\\exportdata\\sec1.csv", stringsAsFactors=F, header=F)
sec2 <- read.csv("C:\\exportdata\\sec2.csv", stringsAsFactors=F, header=F)
# The first column contains dates.
# I use strptime to tell it what format these appear in.
sec1_dates <- strptime(sec1[,1], "%m/%d/%Y %H:%M:%S")
sec2_dates <- strptime(sec2[,1], "%m/%d/%Y %H:%M:%S")
# The second column contains the close prices for the securities.
# I use the zoo function to create zoo objects from that data.
# Input = a vector of data and a vector of dates.
a <- zoo(sec1[,2], sec1_dates)
b <- zoo(sec2[,2], sec2_dates)
# create a discrete time-series with the exact time frame desired
# per tip from James
template <- zoo(NULL, seq(sec1_dates[1], tail(sec1_dates, 1), "min"))
template <- template[which(strftime(time(template),"%H:%M")>"08:30" & strftime(time(template),"%H:%M")<"15:00")]
# The merge function is then used to merge
# 1) each security to the template (uses the discrete date/time range)
# 2) remove the column of data from template (used only for dates)
# 3) each security to one another (this was the ultimate goal anyway.
a.zoo <- merge(a, template, all=TRUE)
a.zoo$template <- NULL
b.zoo <- merge(b, template, all=TRUE)
b.zoo$template <- NULL
t.zoo <- merge(a.zoo, b.zoo, all=TRUE)
# Fill all NA elements with the closest non NA value.
t <- na.locf(t.zoo)
-1請通過提供樣品數據說明問題。使用'dput'來做到這一點。顯示你得到的以及它與你想要的不同。 「顯然失敗」根本不明顯。 'merge.zoo'不需要匹配索引。 – 2011-03-18 11:35:32