這裏是一種可能的方法。它使用ave
根據「id」發生的次數來創建一個「時間」變量,對我而言,這聽起來就像您要查找的內容。
你的數據,但是訂購(使用set.seed
以便其他人可以複製它):
set.seed(1)
h <- seq(from=as.Date("2005-06-01"),
to=as.Date("2008-06-30"), by=1)
a <- data.frame(id=sample(c(1:100), 300, replace=TRUE),
val=rnorm(n=300),
date=sample(h, 300, replace=TRUE))
rm(h)
a <- a[order(a$id, a$date), ]
rbind(head(a), tail(a))
# id val date
# 27 2 0.78763961 2007-08-25
# 116 2 0.27005490 2008-03-05
# 281 3 -2.03328560 2006-08-08
# 47 3 1.44115771 2007-06-25
# 133 4 1.32425863 2006-06-14
# 228 5 -0.14587563 2006-10-15
# 111 98 0.95101281 2008-04-29
# 293 99 -0.01825971 2006-01-20
# 139 99 0.43370215 2008-02-20
# 121 100 -0.25893258 2005-06-07
# 18 100 -1.42449465 2007-08-19
# 104 100 -0.24766434 2008-05-11
您將與8「時代」,通過使用table
檢查結束。
max(table(a$id))
# [1] 8
a$time <- ave(a$id, a$id, FUN=seq_along)
rbind(head(a), tail(a))
# id val date time
# 27 2 0.78763961 2007-08-25 1
# 116 2 0.27005490 2008-03-05 2
# 281 3 -2.03328560 2006-08-08 1
# 47 3 1.44115771 2007-06-25 2
# 133 4 1.32425863 2006-06-14 1
# 228 5 -0.14587563 2006-10-15 1
# 111 98 0.95101281 2008-04-29 1
# 293 99 -0.01825971 2006-01-20 1
# 139 99 0.43370215 2008-02-20 2
# 121 100 -0.25893258 2005-06-07 1
# 18 100 -1.42449465 2007-08-19 2
# 104 100 -0.24766434 2008-05-11 3
a.wide <- reshape(a, direction = "wide", idvar="id", timevar="time")
a.wide[1:8, 1:8]
# id val.1 date.1 val.2 date.2 val.3 date.3 val.4
# 27 2 0.7876396 2007-08-25 0.2700549 2008-03-05 NA <NA> NA
# 281 3 -2.0332856 2006-08-08 1.4411577 2007-06-25 NA <NA> NA
# 133 4 1.3242586 2006-06-14 NA <NA> NA <NA> NA
# 228 5 -0.1458756 2006-10-15 0.5929847 2008-03-31 NA <NA> NA
# 299 6 0.2368037 2006-02-06 1.0341077 2006-10-07 NA <NA> NA
# 10 7 1.8692906 2005-07-19 -0.4839749 2006-06-02 1.435070 2007-11-30 1.017754
# 158 8 0.5672209 2006-08-28 -0.4075286 2006-11-11 -2.285236 2007-03-29 NA
# 69 9 0.6422413 2008-06-20 NA <NA> NA <NA> NA
names(a.wide)
# [1] "id" "val.1" "date.1" "val.2" "date.2" "val.3" "date.3" "val.4"
# [9] "date.4" "val.5" "date.5" "val.6" "date.6" "val.7" "date.7" "val.8"
# [17] "date.8"
請注意,在調用'ave'之前不需要對data.frame進行排序。 –
@BrianDiggs,這不是必要*,我同意。但是我更喜歡'date.1'在我的結果'data.frame'中是一個早於'date.2'的日期,並且使用'order()'確保了這種情況。 – A5C1D2H2I1M1N2O1R2T1
我同意mrdwab - 雖然它沒有明確表示在這個問題.. – Misha