2
我遇到了一些違揹我理解的事情。我的理解是,對於活動對象,'this'不能爲空,但是,對於下面顯示的情況,我正在遇到類似的情況。斯卡拉 - 可以'這個'在斯卡拉爲空對象?
上下文 - 我在這種情況下使用XGBoost4J-Spark包。你可以看看源代碼here。更具體地說,我指的是XGBoostEstimator類。我有這個類的下面的定義,只有一個附加的打印語句。
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.scala.{EvalTrait, ObjectiveTrait}
import org.apache.spark.ml.{Predictor, Estimator}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.mllib.linalg.{VectorUDT, Vector}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{NumericType, DoubleType, StructType}
import org.apache.spark.sql.{DataFrame, TypedColumn, Dataset, Row}
/**
* the estimator wrapping XGBoost to produce a training model
*
* @param inputCol the name of input column
* @param labelCol the name of label column
* @param xgboostParams the parameters configuring XGBoost
* @param round the number of iterations to train
* @param nWorkers the total number of workers of xgboost
* @param obj the customized objective function, default to be null and using the default in model
* @param eval the customized eval function, default to be null and using the default in model
* @param useExternalMemory whether to use external memory when training
* @param missing the value taken as missing
*/
class XGBoostEstimator(
inputCol: String, labelCol: String,
xgboostParams: Map[String, Any], round: Int, nWorkers: Int,
obj: Option[ObjectiveTrait] = None,
eval: Option[EvalTrait] = None, useExternalMemory: Boolean = false, missing: Float = Float.NaN)
extends Estimator[XGBoostModel] {
println(s"This is ${this}")
override val uid: String = Identifiable.randomUID("XGBoostEstimator")
/**
* produce a XGBoostModel by fitting the given dataset
*/
def fit(trainingSet: Dataset[_]): XGBoostModel = {
val instances = trainingSet.select(
col(inputCol), col(labelCol).cast(DoubleType)).rdd.map {
case Row(feature: Vector, label: Double) =>
LabeledPoint(label, feature)
}
transformSchema(trainingSet.schema, logging = true)
val trainedModel = XGBoost.trainWithRDD(instances, xgboostParams, round, nWorkers, obj.get,
eval.get, useExternalMemory, missing).setParent(this)
copyValues(trainedModel)
}
override def copy(extra: ParamMap): Estimator[XGBoostModel] = {
defaultCopy(extra)
}
override def transformSchema(schema: StructType): StructType = {
// check input type, for now we only support vectorUDT as the input feature type
val inputType = schema(inputCol).dataType
require(inputType.equals(new VectorUDT), s"the type of input column $inputCol has to VectorUDT")
// check label Type,
val labelType = schema(labelCol).dataType
require(labelType.isInstanceOf[NumericType], s"the type of label column $labelCol has to" +
s" be NumericType")
schema
}
}
當我初始化通過Sprak殼牌相同的代碼(或以其他方式通過測試),以下是輸出我得到:
scala> import ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator
import ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator
scala> val xgb = new XGBoostEstimator("features", "label", Map.empty,10, 2)
This is null
xgb: ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator = XGBoostEstimator_6cd31d495c8f
scala> xgb.uid
res1: String = XGBoostEstimator_6cd31d495c8f
任何澄清,爲什麼當這個行爲是可能的會有幫助。
你確定它不是'this.toString()'返回字符串' 「空」'?如果你用println(「null?」+(this eq null))'來打印呢? – sjrd
@sjrd我忽略了toString在基類中被覆蓋。你是對的,這是導致問題的toString。 –