2017-03-05 102 views
0

我想繪製在堆積的barplot中分解成雪和雨的月平均降水量。從在這個網站上搜索,我發現了一些代碼,但是,因爲我沒有完全理解代碼,所以我無法改變它的美學。ggplot中的數值的堆積barplot

下面是創建我想要的情節的代碼,但它看起來.. ..有點「醜陋」。通常,當使用ggplot時,我將繪圖保存到一個變量中,然後繼續添加和更改事物。由於在此代碼中繪圖函數是嵌入式的,我不知道如何將繪圖輸出保存到變量中。

correct_order <- c("Jan","Feb","Mar","Apr","May","Jun", 
        "Jul","Aug","Sep","Oct","Nov","Dec") 
cn %>% group_by(Months) %>% 
    summarise(Rain = mean(rain_mm,na.rm = TRUE),Snow = mean(snow_cm,na.rm = TRUE)) %>% 
    gather(Legend, Precipitation, -Months) %>% 
    ggplot(.,aes(x = Months, y = Precipitation, 
       group = Legend, color = Legend)) + 
    scale_x_discrete(limits=correct_order) + 
    geom_bar(stat="identity") 

下面是我的數據集dput。

structure(list(Months = structure(c(5L, 4L, 8L, 1L, 9L, 7L, 6L, 
2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 
10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 
4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 
9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 
2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 
10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 
4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 
9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 
2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 
10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 
4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L), .Label = c("Apr", 
"Aug", "Dec", "Feb", "Jan", "Jul", "Jun", "Mar", "May", "Nov", 
"Oct", "Sep"), class = "factor"), station = structure(c(7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L), .Label = c("albernirob", "blackcreeek", 
"campbellrivairp", "campbellrivsurf", "capemudge", "comoxairp", 
"courtney", "mudbay", "oysterriver", "powriv", "powrivairp", 
"qualicumhatch", "qualicumriverres", "stillwater"), class = "factor"), 
    temp_davg_c = c(3, 3.6, 5.7, 9.1, 12.5, 15.5, 17.9, 17.6, 
    14.2, 9, 5.1, 3.1, 2.8, 3.4, 5.4, 8.5, 11.7, 14.8, 17.1, 
    16.9, 13.6, 8.6, 5, 2.8, 2.4, 3.2, 5.2, 8, 11.6, 14.7, 17.3, 
    17.2, 13.7, 8.6, 4.4, 2.1, 2.6, 3.8, 5.9, 7.4, 11.5, 14.3, 
    16.2, 17.2, 12.7, 8.1, 4.1, NA, 4.1, 4.6, 6.3, 8.8, 12.1, 
    14.9, 17.2, 17.1, 14.2, 9.6, 5.8, 3.8, 3.9, 4.3, 6.1, 8.8, 
    12.4, 15.5, 18, 17.9, 14.5, 9.5, 5.7, 3.5, 3.5, 4, 5.9, 8.6, 
    12.1, 15.1, 17.5, 17.4, 14.1, 9.3, 5.3, 3.1, 3.3, 3.8, 5.6, 
    8.3, 12, 15.1, 17.3, 17.2, 13.6, 8.9, 5.2, 3.2, 3.9, 4.2, 
    5.9, 8.6, 12, 14.9, 17.1, 16.7, 13.6, 9.2, 5.6, 3.5, 2.8, 
    3.7, 5.8, 8.5, 11.9, 14.9, 17.3, 17.4, 14.1, 9.2, 4.9, 2.6, 
    2, 3, 5.7, 8.5, 12.3, 15.5, 18.3, 18.5, 15.3, 9.8, 4.6, 1.8, 
    4.6, 5.1, 7, 9.6, 13, 15.8, 18.4, 18.6, 15.6, 10.8, 6.8, 
    4.3, 3.6, 3.9, 5.9, 8.6, 11.9, 14.9, 17.2, 17.2, 14.1, 9.4, 
    5.3, 3.1, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), 
    temp_dmax_c = c(5.6, 7.1, 10, 14.3, 18.1, 21, 23.8, 23.7, 
    20.1, 13, 8, 5.4, 5.8, 7.4, 10, 13.9, 17.3, 20.2, 22.9, 22.8, 
    19.6, 13, 8.4, 5.4, 5.5, 7.2, 9.7, 13.2, 17, 20.1, 23, 23.3, 
    19.8, 13.1, 7.7, 4.9, 5.6, 7.5, 10.6, 12.2, 16.7, 19.5, 21.6, 
    23.2, 18, 12.3, 7.5, NA, 6.6, 7.6, 9.8, 12.9, 16.5, 19.5, 
    22.1, 22, 18.6, 12.8, 8.5, 6.2, 6.4, 7.4, 9.6, 12.9, 16.6, 
    19.8, 22.8, 22.7, 19, 12.9, 8.5, 5.9, 6.2, 7.5, 10.1, 13.5, 
    17.2, 20.3, 23.1, 23.1, 19.5, 13.4, 8.3, 5.6, 6.2, 7.4, 9.8, 
    13.2, 17.1, 20.2, 22.6, 22.5, 18.9, 12.8, 8.3, 5.8, 6.5, 
    7.5, 9.9, 12.9, 16.7, 19.6, 22.3, 22.1, 18.7, 13, 8.5, 5.9, 
    5.5, 7.4, 10.1, 13.5, 17.2, 20.3, 23.1, 23.5, 20, 13.3, 7.8, 
    5, 4.3, 6.6, 10.5, 14.2, 18.6, 21.9, 25.6, 26.1, 22.4, 14.4, 
    7.3, 3.8, 6.8, 7.8, 10.4, 13.5, 17.1, 19.8, 22.7, 22.9, 19.5, 
    13.6, 9, 6.4, 5.8, 6.9, 9.4, 12.8, 16.5, 19.4, 22.1, 22.3, 
    18.7, 12.6, 7.7, 5.3, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA), temp_dmin_c = c(0.3, 0, 1.3, 3.9, 6.8, 9.9, 
    11.9, 11.5, 8.2, 5, 2.1, 0.7, -0.3, -0.6, 0.9, 3.1, 6.1, 
    9.3, 11.3, 10.9, 7.5, 4.2, 1.6, 0.2, -0.8, -0.7, 0.7, 2.8, 
    6.2, 9.3, 11.5, 11.1, 7.6, 4, 1, -0.8, -0.5, 0, 1.3, 2.6, 
    6.2, 9, 10.8, 11.1, 7.4, 3.8, 0.6, NA, 1.6, 1.5, 2.8, 4.7, 
    7.7, 10.3, 12.2, 12.2, 9.7, 6.4, 3.1, 1.4, 1.4, 1.2, 2.5, 
    4.6, 8, 11.1, 13.3, 13, 9.9, 6, 2.9, 0.9, 0.7, 0.5, 1.7, 
    3.7, 6.9, 9.8, 11.8, 11.7, 8.6, 5.3, 2.3, 0.5, 0.3, 0.1, 
    1.5, 3.4, 6.9, 9.8, 11.7, 11.7, 8.2, 5, 2, 0.5, 1.2, 0.8, 
    2, 4.1, 7.3, 10.1, 11.8, 11.3, 8.4, 5.3, 2.7, 0.9, 0.1, 0.1, 
    1.4, 3.5, 6.6, 9.4, 11.5, 11.2, 8.2, 5, 1.9, 0.2, -0.3, -0.6, 
    0.7, 2.7, 6, 9, 10.9, 10.9, 8, 5, 1.8, -0.3, 2.3, 2.4, 3.6, 
    5.6, 8.8, 11.8, 14, 14.3, 11.6, 8, 4.6, 2.2, 1.2, 0.9, 2.3, 
    4.3, 7.3, 10.4, 12.3, 12.1, 9.4, 6.1, 2.8, 0.9, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA), rain_mm = c(216, 134.8, 
    127, 90.7, 53, 53, 29.9, 35.4, 45.7, 146.9, 232.3, 236.4, 
    216, 166.8, 149.3, 105, 72.8, 63.2, 42.3, 43.1, 54, 171.8, 
    256.2, 247.3, 194.6, 135.5, 128.4, 91.6, 68.4, 62.9, 39.4, 
    44.6, 55.2, 161, 222.1, 204.2, 186, 140.2, 120.3, 87.2, 58.2, 
    51.3, 35.1, 39, 52.9, 154.8, 228.4, 218.5, 215.2, 135.1, 
    130.8, 93.6, 70.2, 61.1, 39.5, 45.6, 58.7, 168.6, 241, 220.8, 
    159.1, 107.8, 95.7, 64.4, 45.6, 42.8, 26.7, 29.2, 41.8, 122.7, 
    191.9, 168.9, 256.9, 174.1, 151.6, 98, 56.6, 45.2, 26, 37.6, 
    53.6, 189.7, 285.2, 256.7, 182, 144.2, 139.3, 87.2, 64.6, 
    54.7, 36.4, 39, 48.9, 152.9, 228.4, 215.9, 200.6, 131.1, 
    116.3, 79.4, 51.3, 45.3, 26, 34.6, 46.3, 146.8, 214, 180.7, 
    219.3, 150.4, 141, 101.1, 72.1, 62.8, 41.9, 49.5, 59.3, 180.8, 
    249.9, 234.2, 317, 222.7, 215.6, 143.6, 87.8, 62.2, 31, 46.4, 
    61.4, 218.3, 345.2, 323.2, 132, 88.4, 92.4, 70.8, 70.9, 57.4, 
    36.5, 42.3, 51.4, 117.5, 154.9, 134.5, 145.7, 101.9, 104.2, 
    83.2, 76.6, 67.6, 37.5, 45.3, 54.7, 125.5, 171.6, 146.5, 
    185.2, 125.5, 127.8, 99.6, 92.4, 73.7, 46, 50.7, 64.6, 152.1, 
    212.6, 178.5), snow_cm = c(15.9, 9.3, 11.3, 0.1, 0, 0, 0, 
    0, 0, 0.2, 6, 12.1, 17.3, 10, 6.7, 0.2, 0, 0, 0, 0, 0, 1.1, 
    6.4, 16, 23.3, 14.4, 11.7, 0.5, 0, 0, 0, 0, 0, 1.2, 10.5, 
    22.6, 13.2, 8.4, 7.6, 0, 0, 0, 0, 0, 0, 0.8, 7.3, 14.3, 13.8, 
    6.4, 6.3, 0.2, 0, 0, 0, 0, 0, 0.6, 6, 14.7, 11.9, 6, 9.9, 
    0.2, 0, 0, 0, 0, 0, 0.1, 8.2, 18.7, 12.9, 13.3, 8.2, 0, 0, 
    0, 0, 0, 0, 1.1, 4.8, 15.2, 14.9, 7.8, 4.6, 0, 0, 0, 0, 0, 
    0, 0.9, 4.1, 8.6, 10.4, 8.8, 4.3, 0, 0, 0, 0, 0, 0, 0.4, 
    4.2, 9.2, 14.8, 10.1, 7.1, 0.1, 0, 0, 0, 0, 0, 0.5, 7.2, 
    16.5, 22.6, 16.9, 8.2, 0.6, 0, 0, 0, 0, 0, 1.6, 8, 21.4, 
    6.1, 4.6, 3.8, 0, 0, 0, 0, 0, 0, 0.2, 3.4, 4.2, 13.6, 7.8, 
    6.8, 0.1, 0, 0, 0, 0, 0, 0.3, 6.5, 11.5, 8.1, 4.8, 2.7, 0, 
    0, 0, 0, 0, 0, 0.2, 4.4, 9), precip_mm = c(231.8, 144.1, 
    138.3, 90.7, 53, 53, 29.9, 35.4, 45.7, 147.1, 238.3, 248.5, 
    233.3, 176.8, 155.9, 105.2, 72.8, 63.2, 42.3, 43.1, 54, 172.9, 
    262.6, 263.3, 217.5, 149.5, 140, 92.1, 68.4, 62.9, 39.4, 
    44.6, 55.2, 162.2, 231.9, 225.7, 198.9, 148.6, 127.9, 87.2, 
    58.2, 51.3, 35.1, 39, 52.9, 155.6, 235.7, 232.8, 229.1, 141.4, 
    137.1, 93.8, 70.2, 61.1, 39.5, 45.6, 58.7, 169.2, 246.9, 
    235.5, 171.9, 114.3, 105.7, 64.6, 45.6, 42.8, 26.7, 29.2, 
    41.8, 122.8, 200.5, 187.9, 269.9, 187.4, 159.8, 98, 56.6, 
    45.2, 26, 37.6, 53.6, 190.8, 290, 272, 196.9, 151.9, 143.9, 
    87.2, 64.6, 54.7, 36.4, 39, 48.9, 153.8, 232.6, 224.5, 211, 
    139.9, 120.6, 79.4, 51.3, 45.3, 26, 34.6, 46.3, 147.2, 218.1, 
    189.8, 234.1, 160.4, 148, 101.2, 72.1, 62.8, 41.9, 49.5, 
    59.3, 181.3, 257.1, 250.7, 339.5, 239.6, 223.8, 144.2, 87.8, 
    62.2, 31, 46.4, 61.4, 219.8, 353.2, 344.6, 138.1, 93.1, 96.1, 
    70.8, 70.9, 57.4, 36.5, 42.3, 51.4, 117.7, 158.3, 138.7, 
    158.9, 109.4, 110.7, 83.3, 76.6, 67.6, 37.5, 45.3, 54.7, 
    125.8, 178, 157.8, 193.3, 130.3, 130.6, 99.6, 92.4, 73.7, 
    46, 50.7, 64.6, 152.3, 216.9, 187.5), date = structure(c(14610, 
    14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883, 
    14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791, 
    14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700, 
    14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610, 
    14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883, 
    14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791, 
    14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700, 
    14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610, 
    14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883, 
    14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791, 
    14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700, 
    14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610, 
    14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883, 
    14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791, 
    14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700, 
    14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610, 
    14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883, 
    14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791, 
    14822, 14853, 14883, 14914, 14944), class = "Date")), .Names = c("Months", 
"station", "temp_davg_c", "temp_dmax_c", "temp_dmin_c", "rain_mm", 
"snow_cm", "precip_mm", "date"), row.names = c(NA, -168L), class = "data.frame") 
+0

什麼是'correct_order'? – G5W

+1

如果您在'通過移除'%>%'收集(圖例,降水量,月份)'後停止管道,您將有數據用於'cn'中的繪圖。然後你可以像往常一樣開始使用該圖(只需在'ggplot'行的開頭用'cn'替換'.'。 – lbusett

+3

你可能想'fill = legend'而不是'color = legend'在'aes ' –

回答

1

可以分開你的代碼從GG-繪圖部分dplyr部分:

correct_order <- c("Jan","Feb","Mar","Apr","May","Jun", "Jul","Aug","Sep","Oct","Nov","Dec") 

weather_data <- 
    dtt %>% 
    group_by(Months) %>% 
    summarise(Rain = mean(rain_mm,na.rm = TRUE),Snow = mean(snow_cm,na.rm = TRUE)) %>% 
    gather(Legend, Precipitation, -Months) 

    ggplot(weather_data, aes(x = Months, y = Precipitation, fill = Legend)) + 
    scale_x_discrete(limits=correct_order) + 
    geom_col() 

正如前面已經提到的,填寫=代替色=可能是你在找什麼:

enter image description here

+0

謝謝丹,好了,現在我明白你在做什麼了。是的,完全爲我工作!謝謝! – user1807857