2016-12-14 139 views
1

我想在數據集上做一個分類器。我第一次用XGBoost:爲什麼xgboost.cv和sklearn.cross_val_score會給出不同的結果?

import xgboost as xgb 
import pandas as pd 
import numpy as np 

train = pd.read_csv("train_users_processed_onehot.csv") 
labels = train["Buy"].map({"Y":1, "N":0}) 

features = train.drop("Buy", axis=1) 
data_dmat = xgb.DMatrix(data=features, label=labels) 

params={"max_depth":5, "min_child_weight":2, "eta": 0.1, "subsamples":0.9, "colsample_bytree":0.8, "objective" : "binary:logistic", "eval_metric": "logloss"} 
rounds = 180 

result = xgb.cv(params=params, dtrain=data_dmat, num_boost_round=rounds, early_stopping_rounds=50, as_pandas=True, seed=23333) 
print result 

,其結果是:

 test-logloss-mean test-logloss-std train-logloss-mean 
0    0.683539   0.000141   0.683407 
179   0.622302   0.001504   0.606452 

我們可以看到它大約是0.622;

但是當我切換到sklearn使用完全相同的參數(我認爲),結果是完全不同的。下面是我的代碼:

from sklearn.model_selection import cross_val_score 
from xgboost.sklearn import XGBClassifier 
import pandas as pd 

train_dataframe = pd.read_csv("train_users_processed_onehot.csv") 
train_labels = train_dataframe["Buy"].map({"Y":1, "N":0}) 
train_features = train_dataframe.drop("Buy", axis=1) 

estimator = XGBClassifier(learning_rate=0.1, n_estimators=190, max_depth=5, min_child_weight=2, objective="binary:logistic", subsample=0.9, colsample_bytree=0.8, seed=23333) 
print cross_val_score(estimator, X=train_features, y=train_labels, scoring="neg_log_loss") 

,其結果是:[-4.11429976 -2.08675843 -3.27346662],扭轉這一局面還遠遠0.622之後。

我把一個斷點轉換爲cross_val_score,並且看到分類器正在通過嘗試預測測試集中的每個元組爲負值,並以0.99的概率進行瘋狂的預測。

我想知道我哪裏出錯了。有人能幫助我嗎?

回答

2

這個問題有點老,但我今天遇到了問題,並找出爲什麼xgboost.cvsklearn.model_selection.cross_val_score給出的結果有很大不同。

默認情況下cross_val_score使用KFoldStratifiedKFold其shuffle參數爲False,因此摺疊不會從數據中隨機抽取。

所以,如果你這樣做,那麼你應該得到相同的結果,

cross_val_score(estimator, X=train_features, y=train_labels, scoring="neg_log_loss", cv = StratifiedKFold(shuffle=True, random_state=23333)) 

保持random stateStratifiedKfoldseedxgboost.cv同樣得到準確可重複的結果。

相關問題