3
In [127]: x = np.arange(2)
In [128]: np.cov(x,x)
Out[128]:
array([[ 0.5, 0.5],
[ 0.5, 0.5]])
In [129]: x.var()
Out[129]: 0.25
這是爲什麼?我認爲協方差矩陣對角元素應該是該序列的方差。爲什麼numpy cov對角元素和var函數具有不同的值?
In [127]: x = np.arange(2)
In [128]: np.cov(x,x)
Out[128]:
array([[ 0.5, 0.5],
[ 0.5, 0.5]])
In [129]: x.var()
Out[129]: 0.25
這是爲什麼?我認爲協方差矩陣對角元素應該是該序列的方差。爲什麼numpy cov對角元素和var函數具有不同的值?
在numpy的,cov
默認爲1,而var
默認「自由的增量程度」來的0。從筆記ddof到numpy.var
Notes
-----
The variance is the average of the squared deviations from the mean,
i.e., ``var = mean(abs(x - x.mean())**2)``.
The mean is normally calculated as ``x.sum()/N``, where ``N = len(x)``.
If, however, `ddof` is specified, the divisor ``N - ddof`` is used
instead. In standard statistical practice, ``ddof=1`` provides an
unbiased estimator of the variance of a hypothetical infinite population.
``ddof=0`` provides a maximum likelihood estimate of the variance for
normally distributed variables.
所以,你可以讓他們通過採取一致認爲:
In [69]: cov(x,x)#defaulting to ddof=1
Out[69]:
array([[ 0.5, 0.5],
[ 0.5, 0.5]])
In [70]: x.var(ddof=1)
Out[70]: 0.5
In [71]: cov(x,x,ddof=0)
Out[71]:
array([[ 0.25, 0.25],
[ 0.25, 0.25]])
In [72]: x.var()#defaulting to ddof=0
Out[72]: 0.25
比我更清晰的答案還值得一提的是,基本上所有其他numpy函數默認爲'ddof = 0'。 'numpy.cov'是個例外,可能是出於歷史原因。 –
謝謝你們兩位!這確實令人困惑。在Excel中,我們有一個用於不同目的的人口版本和樣本版本,這更清晰。 – zsljulius