我最近開始使用Isabelle定理證明。因爲我想證明另一個引理,所以我想使用與在「HOL庫」中找到的引理「det_linear_row_setsum」中使用的不同的符號。更具體地說,我想用「χi j notation」而不是「χi」。我一直在嘗試制定一個等價的表達式,但還沒有弄明白。伊莎貝爾矩陣算術:det_linear_row_setsum在庫中有不同的符號
(* ORIGINAL lemma from library *)
(* from HOL/Multivariate_Analysis/Determinants.thy *)
lemma det_linear_row_setsum:
assumes fS: "finite S"
shows "det ((χ i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) = setsum (λj. det ((χ i. if i = k then a i j else c i)::'a^'n^'n)) S"
proof(induct rule: finite_induct[OF fS])
case 1 thus ?case apply simp unfolding setsum_empty det_row_0[of k] ..
next
case (2 x F)
then show ?case by (simp add: det_row_add cong del: if_weak_cong)
qed
..
(* My approach to rewrite the above lemma in χ i j matrix notation *)
lemma mydet_linear_row_setsum:
assumes fS: "finite S"
fixes A :: "'a::comm_ring_1^'n^'n" and k :: "'n" and vec1 :: "'vec1 ⇒ ('a, 'n) vec"
shows "det (χ r c . if r = k then (setsum (λj .vec1 j $ c) S) else A $ r $ c) =
(setsum (λj . (det(χ r c . if r = k then vec1 j $ c else A $ r $ c))) S)"
proof-
show ?thesis sorry
qed
非常感謝您的回答。 – mrsteve