2017-08-05 126 views
1

我想使用選擇性搜索算法將圖像分割成可能的對象位置。我發現我已經用於計算機視覺的庫OpenCV實現了這個功能,如文檔here所示。但是,我使用的是Python而不是C++,因此我查看了OpenCV的github存儲庫,直到找到我在下面轉載的example從Python中調用這個OpenCV函數的正確方法是什麼?

#!/usr/bin/env python 

''' 
A program demonstrating the use and capabilities of a particular image segmentation algorithm described 
in Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders: 
    "Selective Search for Object Recognition" 
International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013 
Usage: 
    ./selectivesearchsegmentation_demo.py input_image (single|fast|quality) 
Use "a" to display less rects, 'd' to display more rects, "q" to quit. 
''' 

import cv2 
import sys 

if __name__ == '__main__': 
    img = cv2.imread(sys.argv[1]) 

    cv2.setUseOptimized(True) 
    cv2.setNumThreads(8) 

    gs = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation() 
    gs.setBaseImage(img) 

    if (sys.argv[2][0] == 's'): 
     gs.switchToSingleStrategy() 

    elif (sys.argv[2][0] == 'f'): 
     gs.switchToSelectiveSearchFast() 

    elif (sys.argv[2][0] == 'q'): 
     gs.switchToSelectiveSearchQuality() 
    else: 
     print(__doc__) 
     sys.exit(1) 

    rects = gs.process() 
    nb_rects = 10 

    while True: 
     wimg = img.copy() 

     for i in range(len(rects)): 
      if (i < nb_rects): 
       x, y, w, h = rects[i] 
       cv2.rectangle(wimg, (x, y), (x+w, y+h), (0, 255, 0), 1, cv2.LINE_AA) 

     cv2.imshow("Output", wimg); 
     c = cv2.waitKey() 

     if (c == 100): 
      nb_rects += 10 

     elif (c == 97 and nb_rects > 10): 
      nb_rects -= 10 

     elif (c == 113): 
      break 

    cv2.destroyAllWindows() 

不幸的是,該命令python selective_search.py "/home/christopher/DroneKit/Vision/Face Detection/Annotated Faces in the Wild/originalPics/2002/07/19/big/img_135.jpg" f運行此程序給了我以下錯誤:

Traceback (most recent call last): 
    File "selective_search.py", line 37, in <module> 
    rects = gs.process() 
TypeError: Required argument 'rects' (pos 1) not found 

基於該錯誤信息,我想也許我可以將它傳遞一個Python列表,然後底層C++函數會用算法的輸出填充它。然而,當我excecuted下面的代碼:

rects = [] 
gs.process(rects) 
print(rects) 

的輸出是一個空的列表,並在拍攝時沒有上繪製矩形顯示。因此,我對如何致電gs.process()感到不知所措。如果有幫助,函數的C++聲明

CV_WRAP virtual void process(CV_OUT std::vector<Rect>& rects) = 0; 

(編輯)從註釋複製的附加信息:

輸出help(gs.process):到None

process(...) method of cv2.ximgproc_segmentation_SelectiveSearchSegmentation instance process(rects) -> None. rects = gs.process(rects) just makes rects None and causes the program to terminate with an exception 

使用rects = gs.process(rects)套rects和導致程序以異常終止。

OpenCV版本是3.2.0。

使用numpy的陣列,而不是一個Python列表的崩潰我的程序以下消息:

OpenCV Error: Assertion failed (channels() == CV_MAT_CN(dtype)) in copyTo, file /home/christopher/opencv/modules/core/src/copy.cpp, line 259 
terminate called after throwing an instance of 'cv::Exception' 
    what(): /home/christopher/opencv/modules/core/src/copy.cpp:259: error: (-215) channels() == CV_MAT_CN(dtype) in function copyTo 

Aborted (core dumped) 
+0

試試'help(gs.process)',看看它告訴你什麼。具有'CV_OUT'參數的IIRC'CV_WRAP'意味着在Python中它將是一個參數,也是一個返回值。通常參數是可選的,但我想這是一個並非總是如此的證明。因此,我希望你想'rects = gs.process(rects)'。 –

+1

@DanMašek進程(...)cv2.ximgproc_segmentation_SelectiveSearchSegmentation實例的方法 進程(rects) - >無。 'rects = gs.process(rects)'只是使rects爲None,並導致程序終止併產生異常。 – CaptainObvious

+0

如果您嘗試傳遞一個numpy數組而不是Python列表,該怎麼辦?這是什麼版本的OpenCV? –

回答

0

很顯然,我的Python編譯OpenCV的3.2.0版本在本地缺少此fix。我繼續使用OpenCV 3.3.0的latest stable release重新編譯我的python綁定,並在OpenCV contrib存儲庫和示例腳本之後按照預期工作。

相關問題