2017-07-21 220 views
2

我想合併兩個數據幀。讓我們考慮以下兩個DFS:合併兩個具有複雜條件的熊貓數據幀

DF1:

id_A,   ts_A, course,  weight 
id1, 2017-04-27 01:35:30, cotton,  3.5 
id1, 2017-04-27 01:36:05, cotton,  3.5 
id1, 2017-04-27 01:36:55, cotton,  3.5 
id1, 2017-04-27 01:37:20, cotton,  3.5 
id2, 2017-04-27 02:35:35, cotton blue, 5.0 
id2, 2017-04-27 02:36:00, cotton blue, 5.0 
id2, 2017-04-27 02:36:35, cotton blue, 5.0 
id2, 2017-04-27 02:37:20, cotton blue, 5.0 

DF2:

id_B, ts_B,     value 
id1, 2017-03-27 01:25:40, 100 
id1, 2017-03-27 01:25:50, 200 
id1, 2017-03-27 01:25:50, 230 
id1, 2017-04-27 01:35:40, 240 
id1, 2017-04-27 01:35:50, 200 
id1, 2017-04-27 01:36:00, 350 
id1, 2017-04-27 01:36:10, 400 
id1, 2017-04-27 01:36:20, 500 
id1, 2017-04-27 01:36:30, 600 
id1, 2017-04-27 01:36:40, 700 
id1, 2017-04-27 01:36:50, 800 
id1, 2017-04-27 01:37:00, 900 
id1, 2017-04-27 01:37:10, 1000 
id2, 2017-04-27 02:35:40, 1000 
id2, 2017-04-27 02:35:50, 2000 
id2, 2017-04-27 02:36:00, 4500 
id2, 2017-04-27 02:36:10, 3000 
id2, 2017-04-27 02:36:20, 6000 
id2, 2017-04-27 02:36:30, 5000 
id2, 2017-04-27 02:36:40, 5022 
id2, 2017-04-27 02:36:50, 5040 
id2, 2017-04-27 02:37:00, 3200 
id2, 2017-04-27 02:37:10, 9000 

DF1應DF2合併使得下列條件成立: 由於時間間隔的差異在df1中的兩個連續行之間,我想將它與在該時間間隔內跟隨的df2中所有行的平均值合併。例如,

id_A,   ts_A, course,  weight 
id1, 2017-04-27 01:35:30, cotton,  3.5 

應合併

id_B, ts_B,     value 
id1, 2017-04-27 01:35:40, 240 
id1, 2017-04-27 01:35:50, 200 
id1, 2017-04-27 01:36:00, 350 

,並獲得

id_A,   ts_A, course,  weight avgValue 
id1, 2017-04-27 01:35:30, cotton,  3.5 263.3 

我想看看從另一個角度思考問題 - 這將包括DF2的缺失行成DF1 - 通過使用merge_asof但我沒有得到正確的結果:

pd.merge_asof(df2_sorted, df1, left_on='ts_B', right_on='ts_A', left_by='id_B', right_by='id_A', direction='backward') 

回答

1

我想你需要merge_asof,但使用計數器reset_index每行都是唯一的價值df1

df1 = df1.reset_index(drop=True) 
print (df1.index) 
RangeIndex(start=0, stop=8, step=1) 

df = pd.merge_asof(df2_sorted, 
        df1.reset_index(), 
        left_on='ts_B', 
        right_on='ts_A', 
        left_by='id_B', 
        right_by='id_A') 

然後通過輸出列GROUPBY和聚合mean(用於index列不要忘記):

df = df.groupby(['id_A','ts_A', 'course', 'weight', 'index'], as_index=False)['value'] 
     .mean() 
     .drop('index', axis=1) 
print (df) 
    id_A    ts_A  course weight  value 
0 id1 2017-04-27 01:35:30  cotton  3.5 263.333333 
1 id1 2017-04-27 01:36:05  cotton  3.5 600.000000 
2 id1 2017-04-27 01:36:55  cotton  3.5 950.000000 
3 id2 2017-04-27 02:35:35 cotton blue  5.0 1500.000000 
4 id2 2017-04-27 02:36:00 cotton blue  5.0 4625.000000 
5 id2 2017-04-27 02:36:35 cotton blue  5.0 5565.500000 
+0

非常感謝。我正在將其應用於我的案例。幾分鐘,我回來了。 –

+0

沒問題,仔細檢查;) – jezrael

+0

執行df = df.groupby(schema2,as_index = False)['value']。mean().drop('index',axis = 1)時出現以下錯誤raise DataError ('沒有數字類型來聚合') pandas.core.base.DataError:沒有數字類型來聚合 –