我的一個簡單問題是:你如何做兩個數據幀之間的ks.test。在R中的兩個數據幀之間進行操作
例如,我們有兩個數據幀:
D1 <-data.frame (D$Ag,D$Al,D$As,D$Ba,D$Be,D$Ca,D$Cd,D$Co,D$Cu,D$Cr)
D2 <-data.frame (S$Ag,S$Al,S$As,S$Ba,S$Be,S$Ca,S$Cd,S$Co,S$Cu,S$Cr)
注意:這只是一個例子 - 真實案例將包括更多的列,它們包含在一個特定的位置一定元素的濃度。
現在我想運行兩個數據幀之間的ks.test:
ks.test(D$Ag,S$Ag)
ks.test(D$Al,S$Al)
ks.test(D$As,S$As)
等如何,如果沒有做奴隸制所做的工作?
當我做了一個數據幀的shapiro.test我簡單地使用:
lshap1 <- lapply(D1, shapiro.test)
lres1 <- sapply(lshap1, `[`, c("statistic","p.value"))
我所讀過的東西ABOT循環,骨料,mapply - 嘗試不同的東西,如:
apply(D1, 2, function(D2) ks.test(D2,D1[,1])$p.value)
但後來我得到了很多p值= 0 ..當我手動執行時,情況並非如此。我將數據導入爲兩個數據幀,然後將一些數據提取到「較小」的數據幀中進行分析 - 例如,在這種情況下查看有毒元素並排除其他元素。
這是dput(head(D1))和dput(head(D2))的輸出是一個較小的數據幀。
D1 <- data.frame(DF$As,DF$Cd,DF$Cu,DF$Cr,DF$Ni,DF$Pb,DF$Zn)
D2 <- data.frame(DO$As,DO$Cd,DO$Cu,DO$Cr,DO$Ni,DO$Pb,DO$Zn)
##Output dput(head(D1)):
structure(list(DF.As = c(-0.154868225169351, -0.291459578010276,
0.0355227595866723, 0.0892191549433623, 0.189115121672669,
-0.365222418641706
), DF.Cd = c(1.28810277421719, 1.45844987179892, 0.642331353138319,
0.673164023466527, 0.131548822144598, 0.146964746525726), DF.Cu
c(8.01131080231879,
6.52606822875086, 2.93449454196807, 4.08720148249298, 1.55494291704341,
1.73663851851503), DF.Cr = c(0.164849379809527, 0.196759436988158,
0.307645386162046, 0.302917612808149, 0.187202322026229, 0.25358922601195
), DF.Ni = c(0.362592459542858, 0.527078409257359, 0.477116357433909,
0.469287608844157, 0.225865184678244, 0.355321456594576), DF.Pb
c(0.414448963979605,
0.616598678960665, -0.0531899082482045, 0.47477978516042,
0.422106471495816,
0.0326241032568164), DF.Zn = c(74.7657982668, 74.2978919524635,
36.6575117549406, 47.8440365300156, 21.4962811912273, 23.3823413091772
)), .Names = c("DF.As", "DF.Cd", "DF.Cu", "DF.Cr", "DF.Ni", "DF.Pb",
"DF.Zn"), row.names = c(NA, 6L), class = "data.frame")
##Output dput(head(D2)):
structure(list(DO.As = c(0.0150158517208966, -0.0477743050574027,
-0.121541780066373, -0.0376195600535572, 0.115393920133327,
0.265450918075612), DO.Cd = c(0.367936811743133, 0.445545318262818,
0.350071986298948,
0.331513644782201, 0.603874629105229, 0.598527030667747), DO.Cu
c(1.65127139067621,
1.90306634226191, 1.08280240161368, 1.12130376047927, 1.23137174481965,
1.16618813144813), DO.Cr = c(0.162996340978278, 0.493799568371693,
0.18441814919492, 0.179883906525139, 0.128058190333676, 0.030406737049484
), DO.Ni = c(0.290717040452464, 0.331891307317008, 0.387987078391917,
0.36147470695146, 0.774910299821917, 0.323259411199816), DO.Pb
c(-0.0584055598838365,
0.377799120780818, -0.0741768575020139, 0.511278669452117,
0.320822577941608, 0.250377389869303), DO.Zn = c(16.5625482436821,
14.5084409384572, 16.571001044493, 18.4509635406253, 15.6876446591721,
12.7649440587945)), .Names = c("DO.As", "DO.Cd", "DO.Cu", "DO.Cr", "DO.Ni",
"DO.Pb", "DO.Zn"), row.names = c(NA, 6L), class = "data.frame")
我張貼這是我仍然得到一個錯誤:
## This is code for execution:
col.names =colnames(D1)
lapply(col.names,function(t,d1,d2){ks.test(d1[,t],d2[,t])},D1,D2)
## Output:
Error in `[.data.frame`(d2, , t) : undefined columns chosen
(回溯按鈕所示):
6.stop("undefined columns selected")
5.`[.data.frame`(d2, , t)
4.d2[, t]
3.ks.test(d1[, t], d2[, t])
2.FUN(X[[i]], ...)
1.lapply(col.names, function(t, d1, d2) {ks.test(d1[, t], d2[, t])}, D1, D2)
*注:我的主要目標是做用KS兩個數據集的分佈比較.test - 比較第1列和第1,2和第2,3和3列等等... –