2011-02-12 61 views
0

如何解釋R面板數據模型的結果? 我估計Koenker的(2004)建議的適合形式與面板數據的分位數迴歸的方法,對我的數據:如何解讀分位數迴歸面板數據模型的結果R

rq.fit.panel <- function(X,Y,s,w,taus,lambda) 

    { 
require(SparseM) 
    require(quantreg) 

K <- length(w) 
if(K != length(taus)) 
stop("length of w and taus must match") 
X <- as.matrix(X) 
    p <- ncol(X) 
    n <- length(levels(as.factor(s))) 
    N <- length(y) 
if(N != length(s) || N != nrow(X)) 
stop("dimensions of y,X,s must match") 
    Z <- as.matrix.csr(model.matrix(~as.factor(s)-1)) 
    Fidelity <- cbind(as(w,"matrix.diag.csr") %x% X,w %x% Z) 
    Penalty <- cbind(as.matrix.csr(0,n,K*p),lambda*as(n,"matrix.diag.csr")) 
    D <- rbind(Fidelity,Penalty) 
    y <- c(w %x% y,rep(0,n)) 
a <- c((w*(1-taus)) %x% (t(X)%*%rep(1,N)), 
sum(w*(1-taus)) * (t(Z) %*% rep(1,N)) + lambda * rep(1,n)) 
rq.fit.sfn(D,y,rhs=a) 

} enter code here

bdeduc2<-read.table("dados_rq.txt", header=T) 
z<-c("inter","ne","no","su","co") 
X<-bdeduc2[,z] 
y<-bdeduc2$scoreedu 
s<-bdeduc2$uf 
w<-c(0.1,0.25,0.5,0.25,0.1) 
taus<-c(0.1,0.25,0.5,0.75,0.9) 
lambda<-1 

但我不知道請確認以下結果:

$coef 
[1] 1.02281339 -0.18750668 -0.13688807 -0.04180458 -0.01367417 1.02872440 -0.18055062 -0.13003224 -0.03829135 -0.01409369 1.03377335 -0.16649845 -0.11669812 
[14] -0.03854060 -0.01438620 1.03851101 -0.15328087 -0.10440359 -0.03871744 -0.01465492 1.04330584 -0.14660960 -0.09670756 -0.03465501 -0.01430647 -0.29187982 
[27] -0.21831160 -0.11295134 -0.21530494 -0.15664777 -0.13840296 -0.03224749 -0.11692122 -0.11237144 -0.15112171 -0.10385352 -0.08385934 -0.16090525 -0.30349309 
[40] -0.16121494 -0.03106264 -0.16299994 -0.03182579 -0.22271685 -0.08251486 -0.29031224 -0.19680023 -0.20004209 -0.05601186 -0.21140762 -0.04254752 -0.01864703 

$ierr 
[1] 0 

$it 
[1] 16 

$time 
[1] 0 

##summary rq 

summary(rq) 

    Length Class Mode 
coef 52  -none- numeric 
ierr 1  -none- numeric 
it 1  -none- numeric 
time 1  -none- numeric 
+1

這是應該繼續的問題http://www.crossvalidated.com – 2011-02-14 12:07:14

回答

1

它看起來像適合迴歸並保存它,然後試圖在沒有加載分位數迴歸軟件包的新會話中查看它(它給出了列表摘要,而不是包中的對象摘要)。

請確保用於創建對象的包已加載,然後再次進行彙總以查看是否給出了有意義的輸出。

+0

Hi.Thanks。但我再次裝載pakages(quantreg和SparseM)並沒有發生任何事情。你在暗示我什麼? – Mirelle 2011-02-13 02:52:13

相關問題